

CORRELAÇÃO ENTRE VARIABILIDADE DA FREQUÊNCIA CARDÍACA E PRESSÃO ARTERIAL SISTÓLICA

Fernando Luis Cemenci Gnoatto Universidade Federal da Fronteira Sul gnoatto.f.l.c.27@gmail.com

Raquel Merger Artuzo Universidade Federal da Fronteira Sul <u>raquel_artuzo@outlook.com</u>

Melissa Rodrigues de Souza Universidade Federal da Fronteira Sul melissarodrigues360@gmail.com

Tatiana Champion Universidade Federal da Fronteira Sul <u>tatiana.champion@uffs.edu.br</u>

Eixo 05: Ciências Agrárias

Resumo: A variabilidade da frequência cardíaca (VFC) é um método não invasivo que avalia a modulação do sistema nervoso autônomo. Esse sistema tem papel importante no tônus vasomotor e controle da pressão arterial. O presente estudo teve como objetivo correlacionar a VFC com a pressão arterial sistólica (PAS). A metodologia baseou-se na avaliação de laudos eletrocardiográficos de 78 cães em busca de dados referente a VFC. Quanto à PAS, registrada na ficha clínica dos pacientes, foram classificados 13 cães como normotensos, 14 como pré-hipertensos, 12 como hipertensos e 37 como hipertensos graves. Quando comparados, não se evidenciou significância entre a PAS e as frequências cardíacas mínimas, médias e máximas e nos índices de VFC.

Palavras-chave: Hipertensão. Sistema nervoso autônomo. Cão.

Introdução

A variabilidade da frequência cardíaca (VFC) representa uma análise não invasiva que fornece informações sobre o funcionamento do sistema nervoso autônomo (SHAFFER.; GINSBERG, 2017). A quantificação da VFC normalmente é feita por métodos no domínio de tempo e frequência, medindo a amplitude geral das flutuações dos intervalos entre os batimentos cardíacos, representados pelos intervalos RR ao exame eletrocardiográfico (SHAFFER; GINSBERG, 2017).

Por meio de procedimentos não lineares autônomos e das relações entre cérebro e coração, torna-se possível verificar, de forma segura, o funcionamento cardíaco. Sabe-se que

fatores físicos, ambientais e psicológicos podem alterar os valores da regulação extrínseca da frequência cardíaca, sendo assim, necessário ao coração, adaptar-se (SHAFFER; GINSBERG, 2017; FERNANDES; SEARA, 2021).

Desse modo, ao se realizar a avaliação da VFC, pode-se, de maneira direta, entender o estado geral autonômico, o qual corresponde a dados importantes na Medicina Humana e Veterinária referente a acometimentos e suas respectivas mortalidades, como infarto do miocárdio, insuficiência renal, diabetes, arritmias e degeneração mixomatosa da valva mitral. Portanto, a influência da VFC sobre análises dos sistemas cardíaco e respiratório trazem informações valiosas, entre elas, a regulação da pressão arterial sistólica (RAJENDRA ACHARYA *et al.*, 2006; BLAKE *et al.*, 2018; FERNANDES; SEARA, 2021).

O volume de sangue ejetado pelo coração, a tensão das paredes das artérias e a taxa em que o sangue flui para fora das artérias determinam a pressão arterial (PA). A PA, classificada como sistólica ou diastólica, pode ser determinada de forma direta, através da cateterização arterial e uso de transdutor eletrônico, ou indireta, utilizando o aparelho oscilométrico e o Doppler, sendo essa última mais utilizada na rotina clínica (MAGDER, 2018).

No que se refere a pressão arterial sistólica (PAS), o paciente pode ser classificado como normotenso (PAS inferior a 140 mmHg), pré-hipertenso (PAS entre 140 e 159 mmHg), hipertenso (PAS entre 160 e 179 mmHg) e hipertenso grave (PAS superior a 180 mmHg) (ACIERNO *et a*l., 2018).

O eletrocardiograma e a mensuração da PAS por meio do Doppler são considerados procedimentos de simples realização em consultas cardiológicas veterinárias e de grande importância no prognóstico. Dessa forma, o presente estudo objetiva correlacionar a VFC e a PAS, visto que essa representa uma alteração hemodinâmica. Considera-se válido investigar o tema uma vez que esse ainda é escasso na literatura.

Metodologia

Foram avaliados laudos eletrocardiográficos, bem como o registo da PAS de 78 cães atendidos em consultas cardiológicas na Superintendência Unidade Hospitalar Veterinária Universitária (SUHVU) da Universidade Federal da Fronteira Sul - *Campus* Realeza, durante o período de agosto de 2022 até agosto de 2023. Os dados referentes a PAS foram coletados por meio do sistema de gerenciamento SimplesVet[®], no qual a ficha clínica de cada paciente é armazenada. Os dados referentes a VFC foram coletados por meio do software InCardioDuo[®].

Os exames foram separados em quatro grupos de acordo com a classificação da PAS apresentada por Acierno *et al.*, (2018). Para mensuração da PAS, feita com o uso do Doppler, o paciente é previamente ambientado na sala. A largura do manguito deve corresponder de 30 a 40% a medida da circunferência do braço do animal. Após a escolha, o manguito é alocado no membro torácico do animal e é acoplado ao esfigmomanômetro. A probe do Doppler é posicionada sobre a artéria e o manguito é inflado até que o pulso não seja mais audível, acrescido de mais 20 mmHg, o momento em que o pulso é novamente audível corresponde a PAS (ACIERNO *et al.*, 2018).

O eletrocardiograma (ECG) é executado pelo eletrocardiógrafo computadorizado InCardio X (INpulse®), com o animal posicionado em decúbito lateral direito. Os eletrodos do tipo jacaré são posicionados nas articulações do cotovelo, sendo o vermelho no membro esquerdo e o amarelo no direito, e do joelho, estando o eletrodo preto no membro esquerdo e o verde no direito. No tórax, os eletrodos do sistema unipolar são posicionados: V1 no quinto espaço intercostal (EIC) do hemitórax direito, na altura da junção esternocondral; enquanto V2 a V6 são alocadas no sexto EIC em hemitórax esquerdo, iniciando na região da junção esternocondral com espaços iguais entre elas (SANTILLI *et al.*, 2018). Posteriormente, os eletrodos são embebidos com álcool 70º possibilitando a condutividade elétrica.

No exame eletrocardiográfico foram analisados a VFC por meio do domínio do tempo (Tabela 1) e domínio não-linear (Tabela 2) (SHAFFER; GINSBERG, 2017).

Tabela 1 - Descrição das variáveis mensuradas na variabilidade da frequência cardíaca no domínio do tempo

Índice	Unidade	Definição			
SDNN	ms	Desvio padrão de todos os intervalos normais RR			
Média	ms	Média de todos os intervalos normais RR			
RMSSD	ms	Raiz quadrada da média da soma do quadrado das diferenças sucessivas dos intervalos normais de RR			

Tabela 2 - Descrição das variáveis mensuradas na variabilidade da frequência cardíaca por métodos não-lineares

Método	Sigla	Definição		
Entropia Aproximada	ApEn	Conjunto de medições da complexidade de um sistema estreitamente relacionado a entropia, que é facilmente aplicado para séries temporais biológicas.		
Índice Cardiovagal	CVI	Parâmetro relacionado à atividade parassimpática		
±		Parâmetro relacionado à atividade parassimpática e simpática		
Análise de Flutuação de	DFA α1	Análise de flutuação de tendência, que descreve as		

Tendência		flutuações de curto prazo	
Análise de Flutuação de	DFA α2	Análise de flutuação de tendência, que descreve as	
Tendência		flutuações de longo prazo	

Através do software Graphpad Prism®, os dados foram submetidos ao teste de normalidade de Shapiro-Wilk. As variáveis paramétricas foram submetidas ao teste ANOVA e pós-teste de Dunnett's. Já as variáveis não paramétricas foram submetidas ao teste Kruskal-Wallis e pós-teste de Dunn. Além disso, foi avaliado a correlação dos dados por meio do teste de Spearman. Considerou-se valor p <0,05.

Resultados

Após a estratificação dos resultados da PAS, foram identificados 13 cães normotensos, 14 pré-hipertensos, 12 hipertensos e 37 hipertensos graves.

Não foram observadas diferenças nas frequências cardíacas mínimas, médias e máximas e nos índices de VFC entre cães normotensos, pré-hipertensos, hipertensos e hipertensos graves. Ademais, não foi observada correlação entre a PAS e VFC. A Tabela 3 apresenta os valores de média e desvio padrão ou mediana e intervalo interquartil de frequências cardíacas e índices da VFC.

Tabela 3 - Valores médios e desvios-padrão ou mediana (intervalos interquartis) das frequências cardíacas e índices de variabilidade de frequência cardíaca no domínio do tempo e não-linear

-	G1	G2	G3	G4	P
FC Min	78(67-91)	77 土 22	83 ± 34	84 ± 22	0,8943
FC Méd	123 ± 23	115 ± 18	123 ± 35	125 ± 28	0,7267
FC Max	171 ± 24	168 ± 28	173 ± 33	175(150-195)	0,9485
SDNN	69,4	66,1	60,9	66,7	0,9894
	(51,7-74,3)	(39,6-101,5)	(33,5-199,2)	(41,7-91,7)	
Média	497 ± 87	527 ± 85	519 ± 139	483(400-578)	0,7420
RMSSD	68,1	89,8	85,8	82,2	0,9711
	(42,0-94,8)	(27,4-158,3)	(26,4-271,7)	(34-150)	
ApEn	1,18 土	$1,22 \pm 0,15$	$1,08 \pm 0,16$	$1,11 \pm 0,19$	0,0735
	0,14				
CVI	3,54	$3,54 \pm 0,68$	$3,61 \pm 0,84$	$3,56 \pm 0,57$	0,9847
	(3,30-3,71)				
CSI	1,46	$1,59 \pm 0,81$	$1,65 \pm 0,94$	1,40	0,8237
	(1,21-2,41)			(0,92-1,98)	
DFA α1	$0,73 \pm$	0,53	$0,71 \pm 0,44$	0,56	0,9420
	0,27	(0,42-1,20)		(0,40-1,04)	
DFA α2	0,79 土	$0,65 \pm 0,26$	$0,57 \pm 0,27$	$0,70 \pm 0,24$	0,3097
	0,38				

G1: Normotensos, G2: Pré-hipertensos, G3: Hipertensos, G4: Hipertensos Graves ,FC: Frequência Cardíaca, Min: Mínima, Méd: Média e Max: Máxima

Nesse sentido, a VFC é modulada pelo sistema nervoso autônomo (SNA), por meio de um balanço entre o sistema simpático e parassimpático. Diversos estados fisiológicos e fisiopatológicos no sistema cardiovascular podem apresentar alterações da VFC (GODOY, 2016). É estabelecido que o sistema nervoso autônomo tem papel principal no controle de frequência e ritmo cardíaco, ademais, tem papel importante no tônus vasomotor e controle de pressão arterial (HELLYER *et al.*, 2014).

A atividade cardíaca do nervo vagal é influenciada pelo barorreflexo arterial. No qual a amplitude da arritmia sinusal respiratória tem correlação com a sensibilidade do barorreflexo que é reduzida por hipertensão e diabetes. A relação entre a pressão arterial sistólica e a variabilidade dos intervalos resulta em variação entre dois a três ciclos cardíacos (RAJENDRA ACHARYA *et al.*, 2006).

Conclusão ou Considerações Finais

Apesar do sistema nervoso autônomo ter papel importante na modulação do tônus vasomotor e no controle da pressão arterial, o presente estudo não obteve evidências de uma possível correlação entre os índices apresentados pela VFC e PAS. A principal limitação do estudo trata-se de que a VFC é uma característica individual de cada animal e quando comparada entre animais distintos os resultados podem não ser fidedignos. Mais estudos a longo prazo necessitam ser realizados a fim de se obter dados concretos sobre a correlação dessas variáveis, com um número amostral maior para obter-se dados mais acurados.

Referências

ACIERNO, M. J. *et al.*. ACVIM consensus statement: Guidelines for the identification, evaluation, and management of systemic hypertension in dogs and cats. **J Vet Intern Med.**, v. 32, n. 6, p. 1803 - 1822, 2018. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271319/. Acesso: 17 ago. 2023.

BLAKE, R. R. *et al.* Poincaré plots as a measure of heart rate variability in healthy dogs. **Journal of veterinary cardiology**, v. 20, n. 1, p. 20-32, 2018. Disponível em: https://www.sciencedirect.com/science/article/pii/S1760273417301492?via%3Dihub. Acesso em: 23 ago. 2023.

FERNANDES, Luciano Gonçalves; SEARA, Fernando de Azevedo Cruz. Heart rate variability for small animal veterinarians-A concise debate. **Brazilian Journal of Veterinary Medicine**, v. 43, 2021. Disponível em:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9179192/. Acesso em: 23 ago.2023.

GODOY, M. F. Nonlinear analysis of heart rate variability: a comprehensive review. **Journal of Cardiol Ther**, v. 3, n. 3, p. 528 - 533, 2016. Disponível em: http://www.ghrnet.org/index.php/jct/article/view/1724/1987. Acesso: 23 ago. 2023.

HELLEY, J. *et al.* Autonomic nerve activity and blood pressure in ambulatory dogs. **Heart Rhythm.** v. 11,n. 2, p. 307-313, 2014. Disponível em: https://www.sciencedirect.com/science/article/pii/S1547527113013404. Acesso em: 24 ago. 2023.

MAGDER, S. The meaning of blood pressure. **Critical Care**, v. 22, n. 257, 2018. Disponível em: https://link.springer.com/article/10.1186/s13054-018-2171-1#citeas. Acesso: 17 ago. 2023.

RAJENDRA ACHARYA, U. *et al.* Heart rate variability: a review. **Medical and biological engineering and computing**, v. 44, p. 1031-1051, 2006. Disponível em: https://pubmed.ncbi.nlm.nih.gov/17111118/. Acesso em: 23 ago. 2023.

SANTILLI, R.; MOÏSE, N. S.; PARIAUT, R.; PEREGO, M. Principles of electrocardiography. In: SANTILLI, R.; MOÏSE, N. S.; PARIAUT, R.; PEREGO, M. **Electrocardiography of the dog and cat: diagnosis of arrhythmias**. Edra S.p.A, ed. 2, cap. 2, p. 37 - 51, 2018.

SHAFFER, F.; GINSBERG, J. P. An Overview of Heart Rate Variability Metrics and Norms. **Front Public Health**, v. 5, n. 258, 2017. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5624990/. Acesso: 17 ago. 2023.

