

EVENTO ON-LINE 23 A 26 DE NOVEMBRO

AVALIAÇÃO DA QUALIDADE ESTRUTURAL DO SOLO POR MÉTODO VISUAL (VESS) E SUA RELAÇÃO COM ATRIBUTOS FÍSICOS DO SOLO

Lidiane Martins da Costa

Universidade Federal da Fronteira Sul e-mail: costalidiane00@gmail.com

Douglas Rodrigo Kaiser

Universidade Federal da Fronteira Sul e-mail: douglas.kaiser@uffs.edu.br

Eixo XX: Ciências Agrárias

Resumo: O uso inadequado do solo tem sido o principal responsáveis pela sua degradação. O trabalho teve como objetivo avaliar a eficiência de um método visual e laboratorial para diagnosticar os efeitos de diferentes sistemas de preparo e uso de plantas de cobertura do solo. Os tratamentos foi denominados: PD pousio, ESC pousio, PD cobertura e ESC cobertura. Foi determinado: densidade, macro e microporosidade, porosidade total do solo e atribuído o escore as camadas de solo para aplicação do método visual de avaliação a campo. Com base nas análises estatísticas se conclui que o método visual de avaliação é eficiente.

Palavras-chave: Manejo do solo. Solo. Biodiversidade.

Introdução

O solo é responsável por vários serviços ecossistêmicos que garantem a vida no planeta Terra (DORAN, 2002). A manutenção da qualidade do solo é fundamental para a produção de alimentos, a manutenção do equilíbrio hidrológico e a biodiversidade. A mudança de uso e o manejo do solo são os principais fatores responsáveis pela degradação dos solos sob uso agrícola no Brasil. O aumento do estado de compactação tem sido apontado como um dos principais problemas de degradação do solo nas áreas sob planto direto no sul do Brasil (REICHERT; SUZUKI, 2007). Com a compactação do solo ocorre e aumento da densidade do solo e redução da quantidade, do tamanho e da continuidade do sistema poroso

(KAISER; REICHERT, 2013), o que reduz a taxa de infiltração de água no solo e aumenta o escoamento superficial.

Na região das Missões do Rio Grande do Sul o elevado estado de compactação é um dos principais fatores responsáveis pela baixa produtividade das culturas agrícolas na maioria das propriedades rurais (FIORIN; SCHNELL, 2007), sendo isso resultante da ausência de rotação e diversificação de culturas no sistema de produção e pelo tráfego de máquinas e pisoteio animal em condições de solo sob alta umidade.

Para mitigar os efeitos da compactação em solos argilosos e melhorar a estrutura do solo têm sido utilizadas estratégias de manejo que envolvem a escarificação (CAMARA; KLEIN, 2005) e o uso de plantas de cobertura isoladas ou associadas à escarificação (NICOLOSO; AMADO, 2008). No entanto, o efeito da escarificação tem sido de curta duração (DRESCHER, 2015).

Os métodos mais comuns utilizados para avaliar a alteração da estrutura do solo pela ação do manejo ou pela compactação envolvem a coleta de amostras de solo com anéis, para determinar a densidade e porosidade, medidas de resistência a penetração e avaliação da agregação do solo (REICHERT; SUZUKI, 2007). Essas metodologias exigem equipamentos específicos e laboratórios especializados e o resultado não é instantâneo. Uma das alternativas que tem sido utilizada e difundida no sul do Brasil são os métodos para avaliação visual da estrutura do solo (VESS) (GUIMARÃES; BALL, 2011). Nessa metodologia, uma fatia de solo é coletada até uma profundidade de 25 cm e a estrutura e porosidade são avaliados visualmente e pelo tato, estabelecendo-se um índice de qualidade para a estrutura do solo. Por ser um método simples, de fácil execução e baixo custo, pode melhorar o diagnóstico e gerar melhores informações para a tomada de decisão para definir estratégias de manejo do solo. No entanto, essas metodologias necessitam treinamento e adaptação e calibração com os métodos laboratoriais.

O objetivo deste trabalho foi avaliar a eficiência do Método visual de avaliação da estrutura do solo (VESS) e de métodos quantitativos laboratoriais para diagnosticar o efeito de diferentes sistemas de preparo e uso de plantas de cobertura sobre a qualidade estrutural do solo.

Desenvolvimento

O estudo foi realizado na área experimental da COOPATRIGO - Cooperativa Tritícola Regional Sãoluizense Ltda, situada na cidade de São Luiz Gonzaga-RS, em uma área de

Latossolo Vermelho, com 520 g kg⁻¹ de argila; 45 g kg⁻¹ de areia e 435 g kg⁻¹ de silte na camada de 0 a 30 cm.

O experimento foi instalado em abril de 2020, em uma área com histórico de plantio direto seguido de intenso tráfego de máquinas. O delineamento experimental utilizado foi Blocos ao acaso. Cada bloco (12x12) subdividido em parcela de (3x4) com cinco repetições. Nessa área, foi mantida uma parcela testemunha em pousio e as demais utilizou-se uma mistura de plantas de cobertura composta por (gramíneas, leguminas, crucíferas). Foi realizado uma intervenção mecânica, escarificação do solo no intuito de promover a descompactação mecânica do solo (ESC), e os demais foram mantidos sob sistema plantio direto (PD).

Os tratamentos foram denominados como: PD pousio, ESC pousio, PD cobertura e ESC cobertura. Para amostragem foram selecionados 20 pontos para coletas de amostras de solo com estrutura preservada nas profundidades: 0-10 cm; 10-20 cm; 20-30 cm. Em seguida foi realizada a avaliação visual da estrutura do solo (VESS) seguindo a metodologia estabelecida por (GUIMARÃES; BALL, 2011).

Foram determinadas as variáveis: densidade do solo (Ds), macroporosidade (macro), microporosidade (micro), porosidade total (Pt) e atribuído escore a cada camada de solo de acordo com os critérios estabelecidos para aplicação do VESS a campo, que atribuem notas de acordo com a presença de feições de degradação /recuperação da estrutura na camada de solo.

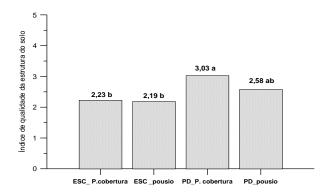
Os dados obtidos foram submetidos a análise de variância e as médias foram comparadas pelo teste de Tukey a 5% de significância. Para avaliar a eficiência do VESS em relação ao método quantitativo, foi realizada análise de correlação de Pearson entre as notas das camadas com as propriedades físicas do solo de cada camada e a correlação do índice de qualidade VESS com valor médio de densidade e porosidade para camadas de 0-30 cm.

Quando observamos dados quantitativos de densidade e porosidade, os maiores valores de densidade foram encontrados no tratamento PD cobertura e PD pousio, para as camadas de 0.10 - 0.20 m e 0.20 - 0.30 m (**tabela 1**). Com relação a porosidade total os maiores valores foram encontrados nas camadas de 0.00 - 0.10 m para os tratamentos ESC cobertura e ESC pousio.

A microporosidade apresentou os menores valores nos tratamentos ESC cobertura e ESC pousio, na camada de 0,00 – 0,10 m, enquanto PD cobertura e PD pousio apresentaram os maiores valores em todas as camadas não diferindo estatisticamente entre si. A

macroporosidade apresentou comportamento inverso à microporosidade quanto à diferenciação estatística dos tratamentos.

Tabela 1. Densidade e distribuição de poros da área em estudo.


Camada (m)	ESC cobertura	ESC pousio	PD cobertura	PD pousio	CV (%)	
Densidade do Solo (Mg m ⁻³)						
0.00 - 0.10	1,00 b	0,91 b	1,17 a	1,23 a	7,68	
0,10 - 0,20	1,36 ab	1,18 b	1,41 a	1,35 ba	7,03	
0,20 - 0,30	1,36 a	1,35 a	1,39 a	1,32 a	4,20	
Porosidade Total (m ³ m ⁻³)						
0,00 - 0,10	0,64 a	0,67 a	0,58 b	0,56 b	4,67	
0,10 - 0,20	0,43 a	0,40 a	0,42 a	0,41 a	6,30	
0,20 - 0,30	0,52 a	0,52 a	0,51 a	0,53 a	3,94	
Microporosidade (m ³ m ⁻³)						
0,00 - 0,10	0,35 b	0,34 b	0,41 a	0,42 a	5,52	
0,10 - 0,20	0,46 a	0,40 a	0,42 a	0,41 a	6,66	
0,20 - 0,30	0,42 a	0,42 a	0,42 a	0,42 a	3,37	
Macroporosidade (m ³ m- ³)						
0,00 - 0,10	0,29 a	0,33 a	0,18 b	0,14 b	19,84	
0,10 - 0,20	0,09 ba	0,18 a	0,08 b	0,11 ba	46,96	
0,20 - 0,30	0,09 a	0,10 a	0,08 a	0,11 a	27,62	

^{*}Médias das colunas seguidas por mesma letra não diferem entre si pelo teste de Tukey a 5% de probabilidade

São considerados críticos ao desenvolvimento de plantas para solos argilosos, valores de densidade entre 1,4 – 1,6 Mg m⁻³ (REICHERT; SUZUKI, 2007). Entretanto, apenas o tratamento PD cobertura na camada de 0,10 -0,20 m apresentou valor considerado restritivo ao desenvolvimento das plantas.

Escores de qualidade estrutural até 2,9 indicam um bom manejo na área, porém valores acima de 3 indicam que a área necessita de modificação de manejo (BALL; GUIMARÃES, 2017). O tratamento PD cobertura (**figura 1**) apresentou o maior escore de qualidade estrutural do solo, 3,03 indicando deterioração na qualidade estrutural, o qual deve-se adotar melhorias no manejo. Os demais tratamentos encontram-se dentro dos limites que indicam um bom manejo.

Figura 1. Índice de qualidade do solo obtida pela metodologia VESS.

Quando correlacionados os resultados da avaliação visual da qualidade estrutural do solo com os valores médios de densidade e porosidade da camada de 0,0 – 0,30 m (**tabela 2**), observou-se uma correlação positiva, pois quanto maior a densidade, menor é a qualidade do solo, ou seja, maior valor do índice do VESS. Entretanto, a porosidade total e macroporosidade a correlação foi negativa, pois à medida que aumenta a porosidade total e a macroporosidade, os valores do índice de VESS são menores, indicando melhor qualidade do solo.

Tabela 2. Correlação de Pearson entre o índice do VESS e os valores médios de densidade e porosidade total da camada de 0 a 30 cm.

	VESS	Nível de significância
Densidade	0,69	0,0008
Porosidade total	-0,68	0,0010
Microporosidade	0,46	0,0400
Macropososidade	-0,65	0,0019

A correlação das notas do índice do VESS das camadas (**tabela 3**) foi positiva para os valores de densidade e microporosidade, enquanto para porosidade total foi negativa, corroborando com as médias (**tabela 2**) e as indicações de qualidade do solo.

Tabela 3. Correlação de Pearson entre notas das camadas do VESS e propriedades total do solo.

	VESS	Nível de significância
Densidade	0,36	0,0045
Porosidade total	-0,36	0,0048
Microporosidade	0,35	0,0061
Macroporosidade	-0,38	0,0030

O que nos possibilita dizer que os tratamentos PD cobertura e PD pousio apresentam menor qualidade do solo e que se deve adotar melhorias de manejo a logo prazo, uma vez que no primeiro ano de introdução de espécies com diferentes sistema radicular os efeitos ainda não foram significativos.

Considerações Finais

O índice de VESS foi eficiente para avaliação da qualidade estrutural do solo, uma vez houve correlação significativa entre as medidas quantitativas de densidade e distribuição de poros do solo. A escarificação do solo alterou significativamente a estrutura do solo na camada superficial. As plantas de cobertura não tiveram efeito significativo sobre a estrutura do solo após um ciclo, sendo seu efeito esperado a longo prazo.

Referências

BALL, Bruce; GUIMARÃES, Rachel. Visual soil evaluation: a summary of some applications and potential developments for agriculture. **Soil Tillage Researc**, v.173, p. 114-124. 2017. Disponível em: https://www.sciencedirect.com/journal/soil-and-tillage-research/vol/173/suppl/C. Acesso em: 08 set. 2021.

CAMARA, Rodrigo; KLEIN, Vilson. Propriedades físico-hídricas do solo sob plantio direto escarificado e rendimento da soja. **Ciência Rural**, v. 35, n. 4, p. 813-819. 2005. Disponível em: https://www.scielo.br/j/cr/a/rm5yJ65v9wJWchJgbkghVzN/?format=pdf&lang=pt Acesso em: 08 set. 2021.

DRESCHER, Marta. Estratégias para descompactação do solo por escarificação e hastes sulcadoras em sistema plantio direto. [Tese]. **Santa Maria: Universidade Federal de Santa Maria**, 2015. Disponível em: https://repositorio.ufsm.br/handle/1/3371 Acesso: 08 set. 2021.

DORAN, John Willian. Soil health and global sustainabily: translating Science into pratictice. Agricultire. Ecosystems and Environment. v. 88, p.119-127. 2002.

FIORIN, Jackson; SCHNELL, Alessandro. **Diagnóstico das propriedades rurais na região de abrangência das cooperativas COOPATRIGO, COOPEROQUE, COTAP, COTRISA, COTRISSAL e TRITICOLA.** Ind ed. Passo Fundo, RS: Editora Berthier, 2007.

KAISER, Douglas Rodrigo; REICHERT, José Miguel. Soil physical capacity and intensity properties for achieving sustainable agriculture in the subtropics and tropics: a review. In: Krümmelbein J, Horn R, Pagliai M, Editors. Soil degradation. Advances in Geoecology. p. 282–339. 2013.

GUIMARÃES, Rachel; BALL, Bruce. **Improvements in the visual evaluation of soil structure**. Soil Use Manage. v. 27, p. 395-403. 2011.

NICOLOSO, Rodrigo; AMADO, Telmo Jorge. Eficiência da escarificação mecânica e biológica na melhoria dos atributos físicos de um latossolo muito argiloso e no incremento do rendimento de soja. **Revista Brasileira de Ciências Solo**, v. 32, n. 4, p. 1723-1734. 2008. Disponível em: https://www.scielo.br/j/rbcs/a/p4q4Ds46LZ95rhxgwvRympp/?lang=pt&format=pdf . Acesso em: 09 set. 2021.

REICHERT, José Miguel; SUZUKI, Luis Eduardo. Compactação do solo em sistemas agropecuários e florestais: Identificação, efeitos, limites críticos e mitigação. Ed. Tópicos Ciência do Solo. Viçosa, Sociedade Brasileira de Ciência do Solo, 2007.

