

Mestrado

28 A 30 DE OUTUBRO DE 2020

PERCURSO HISTÓRICO DO MODELO ATÔMICO EM LIVROS DIDÁTICOS: UMA BREVE ANÁLISE PELA PERSPECTIVA DA HFC

Talita Cristina Raiol Carvalho¹ Clara Virgínia Vieira Carvalho Oliveira Marques²

1. INTRODUÇÃO

As dificuldades encontradas no ensino-aprendizagem dos conteúdos das ciências naturais, em especial da Química, não são novidades. Em geral, essa problemática gira em torno de guestões mais abrangentes, como o fato de que os alunos não conseguem identificar a relação entre o que estudam em ciências e o seu cotidiano e, por isso, entendem que o estudo de ciências se resume à memorização de nomes complexos, classificações de fenômenos e resolução de problemas por meio de algoritmos (SANTOS, 2007).

Nesse contexto, trabalhar a História e Filosofia da Ciência (HFC) pode desempenhar um papel importante na educação. Conforme Oliveira (2002), os estudos em HFC fornecem elementos que permitem reflexões mais profundas sobre a atividade científica, enfraquecendo consideravelmente o mito das verdades definitivas, do empirismo e, para além, frisam o caráter eminentemente humano do conhecimento enquanto construção.

Contrapondo-se a visão mais humana da ciência, a concepção empiristaindutivista tem seu alicerce no empirismo adicionado ao indutivismo. Para caracterizar essa visão epistemológica sobre o indutivismo, Chalmers (1993) afirma que o conhecimento científico é conhecimento provado. As teorias científicas são derivadas de maneira rigorosa da obtenção dos dados da experiência adquiridos por observação e experimento. A ciência é baseada no que podemos ver, ouvir, tocar etc.

Acerca disso, Köhnlein e Peduzzi (2002) afirmam que um dos motivos pelo qual a concepção empirista-indutivista parece ter ficado tão profundamente arraigada à investigação científica é que os cientistas a utilizaram como critério de demarcação entre ciência e não ciência. Isto é, ela ensejou a convicção de que o conhecimento científico derivado dos dados da experiência é um conhecimento objetivo e confiável, uma vez que é provado.

No campo educacional, e mais especificamente no Ensino de Ciências, essa visão epistemológica, pode se tornar um obstáculo no processo de ensinoaprendizagem, como afirma Silveira (1996) ao salientar que o ensino empiristaindutivista pode passar a impressão aos estudantes de que o conhecimento científico é composto por verdades definitivas e inquestionáveis, além de desenvolver intolerância a opiniões diferentes. É nessa vertente de discussão que se volta olhares para o livro didático, uma vez que várias pesquisas discutem sua importância e também o definem como a principal fonte de consulta utilizada pelo professor na preparação de suas aulas e da mesma maneira a principal fonte de estudo dos alunos (KÖHNLEIN; PEDUZZI, 2002, MEGID NETO; FRACALANZA, 2003, CARNEIRO; MÓL, 2005).

¹Mestranda em Ensino de Ciências e Matemática. UFMA.talitacarvalho2843@gmail.com

²Doutora em Química. UFMA. clarabrasil10@gmail.com

Mestrado em Ensino de Ciências

UNIVERSIDADE FEDERAL DA FRONTEIRA SUI

28 A 30 DE OUTUBRO DE 2020

Nesse contexto, o presente artigo objetivou verificar como ocorre à inserção da HFC em três livros didáticos do 9º ano do Ensino Fundamental (EF) do PNLD 2020. A justificativa para a escolha destes exemplares se deu em virtude do acesso facilitado a eles e, também, por estarem entre as opções de uso por docentes de uma escola pública municipal localizada na zona rural de São Luís-MA.

Para tanto, buscou-se evidenciar indícios da presença da concepção empirista-indutivista na produção do conhecimento científico, pelo viés do tópico "História da Evolução dos Modelos atômicos de Dalton a Bohr". Justifica-se a escolha desse conteúdo por ele ser normalmente a introdução das discussões nos estudos dos conteúdos químicos na etapa do Ensino Fundamental - Anos Finais (6º a 9º ano), dentro do conteúdo de "Matéria", pois a disciplina de Química está presente efetivamente apenas no conteúdo referente ao 1º ano do Ensino Médio.

2. METODOLOGIA

Este estudo se deu pela perspectiva da pesquisa qualitativa, por se entender que essa abordagem permite aos investigadores maior flexibilidade no desenvolvimento de uma investigação, e como afirma Bogdan e Biklen (1982), na pesquisa qualitativa há maior interesse pelo processo do que pelos resultados e produtos obtidos. Dessa forma, definiu-se como objeto de análise três livros didáticos (LD) do Componente Curricular Ciências do 9º ano do Ensino Fundamental propostos no PNLD 2020.

Como ponto de partida, realizou-se a escolha de critérios de análise, ou seja, definiu-se duas categorias analíticas com objetivos previamente definidos. Em seguida, fez-se a caracterização dos livros didáticos quanto ao título, autores, editora, edição, ano e número de páginas. No tocante ao procedimento de análise, desenvolveu-se com base nos pressupostos da Análise de Conteúdos de Bardin (2016). Para a autora, esse tipo de análise inclui a categorização, que pode ser entendida como uma operação de classificação de elementos constitutivos de um conjunto por diferenciação, e, em seguida, por reagrupamento segundo o gênero (analogia), com os critérios previamente definidos.

3. RESULTADOS E DISCUSSÕES

Com base na análise de conteúdos de Bardin (2016), procedeu-se a exploração do material a ser estudado, etapa na qual definiu-se duas categorias. A primeira categoria foi intitulada de *Histórico de como deu-se a evolução dos modelos atômicos*, cujo objetivo foi observar quais conotações históricas estão presentes nos livros, ou seja, se a evolução dos modelos ocorreu de forma linear, com ou sem influência de outros fatores. A segunda categoria denominou-se *Presença da concepção Empirista-Indutivista no processo evolutivo dos modelos atômicos*, com o objetivo de identificar indícios da visão empirista-indutivista no tópico da evolução dos modelos.

Caracterização dos livros didáticos

Como mencionado anteriormente, devido à facilidade de acesso a estes exemplares pelas autoras, foram três os livros didáticos analisados. Portanto, o Quadro 01 apresenta os dados relacionados aos livros, especificamente quanto ao título, autores, editora, edição e número de páginas. Como forma de identificação, os livros foram nomeados pelos códigos LD1, LD2 e LD3.

28 A 30 DE OUTUBRO DE 2020

em Ensino de Ciências

Mestrado

Quadro 01. Livros didáticos analisados

Cód.	Título	Autores	Editora	Edição/Ano	Nº de Páginas
LD1	Inovar Ciências da natureza	Sônia Lopes e Jorge Audino	Saraiva	1ª Edição/ 2018	256
LD2	Teláris Ciências	Fernando Gewandsznajder e Helena Pacca	Ática	3ª Edição/2018	256
LD3	Geração Alpha	Ana Luiza Petillo Nery e Gustavo Isaac Killner	SM Educação	2ª Edição/2018	264

Fonte: Elaborado pelas autoras (2020).

Categoria (01): Histórico de como deu-se a evolução dos modelos atômicos

Verificou-se que apenas os livros LD1 e LD2 trazem tópicos referentes à história da evolução dos modelos atômicos, antes de adentrar nos assuntos teóricos de modelos propriamente ditos. O LD3 inicia o conteúdo com a abordagem do método científico e suas características. Quanto às conotações históricas observadas, verificou-se um distanciamento entre as proposições acerca da existência do átomo e o contexto no qual, tanto os filósofos antigos quanto os que sucederam na evolução histórica, se encontravam, o que permite perpetuar a visão da ciência como um conjunto de verdades dogmáticas, resultantes da observação pura e dissociada do contexto social como uma atividade superior, e, como tal, praticada somente por seres intelectualmente superiores (SILVA et.al., 2008).

Ressalta-se a ausência de discussões históricas sobre as contradições e divergências teóricas que existiam a respeito da constituição da matéria, especificamente na existência das duas teorias denominadas Atomismo e Teoria dos Quatro Elementos.

É válido ressaltar que a abordagem empregada nestes dois modos de descrição do mundo natural baseava-se na razão ao invés do empirismo, não existindo a verificação prática de suas hipóteses e conclusões (SILVA et al. 2011). Dessa forma, apenas o LD1 menciona as ideias de Aristóteles que defendia que a matéria era formada pela combinação de ar, água, fogo e terra em diferentes proporções. Essa teoria é conhecida como Teoria dos Quatro Elementos.

Diante disso, se questiona sobre qual a relevância dessas discussões nos livros didáticos? Conforme Silva et al (2011), a relevância está no entendimento de como as ideias aparentemente lógicas, mas não científicas, e em especial as de Aristóteles, influíram e dificultaram o desenvolvimento da ciência por mais de 2.000 anos. Uma das razões para que isso tenha ocorrido, foi o fato das ideias de Aristóteles receberem o apoio da Igreja Católica e o Atomismo ter sido condenado pela mesma instituição. Nesse sentido, a abordagem histórica e filosófica da Ciência pode desmitificar a visão de uma ciência neutra e dissociada de questões históricas e religiosas, como exposto anteriormente.

Categoria (02): Presença da concepção Empirista-Indutivista processo evolutivo dos modelos atômicos.

Mestrado em Ensino de Ciências

28 A 30 DE OUTUBRO DE 2020

Verificou-se na discussão dessa categoria, que a observação e a experimentação são compreendidas como a base segura do conhecimento em geral e, em especial, do conhecimento científico. Sendo assim, a credibilidade sobre o modelo atômico referente a cada cientista é dada na ótica da experimentação feita para atestar e justificar os achados.

O papel da experimentação é da comprovação do conhecimento, sem a qual as ideias propostas não possuem veracidade. Em relação a isso, todos os livros mencionam a relevância dada ao inglês John Dalton (1766-1844), que foi o primeiro cientista a propor experimentalmente a existência do átomo, sendo também o primeiro a criar o modelo atômico denominado "Bola de Bilhar". Ao analisarmos as ideias de Demócrito (ca. 460 a.C.- 370 a.C.) sobre a composição da matéria e a ênfase nas descobertas científicas atribuídas a Dalton, podemos perceber a superioridade atribuída ao conhecimento científico em detrimento do senso comum.

Não foi possível verificar referências às demais formas de conhecimento, ao contrário, um fator recorrente nos livros em questão foi a imagem de que a ciência, em especial a Química, se relaciona a uma verdade "absoluta", pois é algo provado por dados experimentais, logo pressupõe-se a existência de um único método científico, e diante disso, criam-se hipóteses e estas se transformam em teorias e leis (KÖHNLEIN; PEDUZZI, 2002).

CONCLUSÃO

Conclui-se, neste trabalho, que a inserção da história e filosofia da ciência nos conteúdos ainda ocorre de forma superficial. No geral, os livros didáticos apresentam a ciência como verdade absoluta, sem ênfase aos percursos históricos trilhados no seu desenvolvimento. No tocante as descobertas científicas, estas se dão de forma linear e sem influências de fatores políticos, históricos, econômicos e culturais.

Quanto à presença da perspectiva filosófica empirista/indutivista nos livros didáticos, o progresso da ciência é apresentado de forma contínua e acumulativa, não sendo demonstrados os conflitos e problemas que normalmente ocorreram na proposição sobre de que a matéria era constituída e, consequentemente, na construção dos modelos atômicos. A relevância de discussões desta natureza, voltadas para o ensino de ciências, está no fato de que a HFC pode contribuir para combater visões estereotipadas e que podem estar presentes não somente nos livros didáticos, mas também no imaginário de alunos e professores.

4. REFERÊNCIAS

BARDIN, L. Análise de conteúdo. Casas de Ideias: Edições 70, 2016. 279p

BOGDAN, R; BIKLEN, S. K. **Qualitative Research for Education**. Boston: Allyn and Bacon. 1982.

CARNEIRO, Maria Helena da Silva; MÓL, Wildson Luiz Pereira dos Santos Gerson de Souza. LIVRO DIDÁTICO INOVADOR E PROFESSORES: uma tensão a ser vencida. **Ensaio Pesquisa em Educação em Ciências (Belo Horizonte)**, [S.L.], v. 7, n. 2, p. 101-113, ago. 2005. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/1983-21172005070204.

Mestrado em Ensino de Ciências

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CAMPUS CERRO LARGO

28 A 30 DE OUTUBRO DE 2020

CHALMERS, A. F. O que é a ciência afinal? São Paulo: Brasiliense, 1993.

HIDALGO. M. R, et al. Reflexões sobre a inserção da História e Filosofia da Ciência no Ensino de Ciências. **Revista História da Ciência e Ensino**: construindo interfaces, v. 14, p. 19-38, 2016. Disponível em:

https://revistas.pucsp.br/hcensino/article/view/26106. Acesso em: 26 ago. 2020.

KÖHNLEIN, Janete F. Klein; PEDUZZI, Luiz O. Q. Sobre a Concepção Empirista-Indutivista no Ensino de Ciências. 2002. Disponível em:

epef&cod=_sobreaconcepcaoempirista. Acesso em: 25 ago. 2020.

MEGID NETO, Jorge; FRACALANZA, Hilário. O livro didático de ciências: problemas e soluções. **Ciência & Educação (Bauru)**, [S.L.], v. 9, n. 2, p. 147-157, 2003. FapUNIFESP (SciELO). http://dx.doi.org/10.1590/s1516-73132003000200001.

OLIVEIRA, Maurício Pietrocola de. A HISTÓRIA E A EPISTEMOLOGIA NO ENSINO DAS CIÊNCIAS: DOS PROCESSOS AOS MODELOS DE REALIDADE NA EDUCAÇÃO CIENTÍFICA. In: ANDRADE. Maria Ribeiro de. **A ciência em perspectiva. Estudos, ensaios e debates**. Rio de Janeiro: Mast: Sbhc, 2002. p. 1-21. Disponível em:

https://edisciplinas.usp.br/pluginfile.php/2319266/mod_resource/content/1/Mesa%20redonda%20SBH%20vf%20c%C3%B3pia.pdf. Acesso em: 28 ago. 2020.

SANTOS, Wildson Luiz Pereira. Contextualização no ensino de ciências por meio de temas CTS em uma perspectiva crítica. **Ciência & Ensino**, Campinas, v. 1, n. especial, 2007. Não paginado. Disponível em: http://files.gpecea-usp.webnode.com.br/2000003580e00c0e7d9/AULA%206%20TEXTO%2014%20CO NTEXTUALIZACAO%20NO%20ENSINO%20DE%20CIENCIAS%20POR%20EI. pdf. Acesso: 27 ago. 2020.

SILVA, Camila Silveira da; OLIVEIRA, Luiz Antonio Andrade de; OLIVEIRA, Olga Maria Mascarenhas de Faria (Org.). **Evolução histórica da Química.** 2011. Disponível em:

https://acervodigital.unesp.br/bitstream/123456789/40346/6/2ed_qui_m1d1.pdf. Acesso em: 26 ago. 2020.

SILVA. C, P, da. Subsídios para o uso da História das Ciências no Ensino: exemplos extraídos das Geociências **Ciência & Educação**, v. 14, n. 3, p. 497-517, 2008. Disponível em: http://www.scielo.br/pdf/ciedu/v14n3/a09v14n3.pdf. Acesso em: 28. ago.2020.

SILVEIRA, F. L. Da. (1996). A metodologia dos programas de pesquisa: a epistemologia de Imre Lakatos. **Caderno Brasileiro de Ensino de Física**. Acesso em: 30 abr. 2018, https://periodicos.ufsc.br/index.php/fisica/article/view/7047>. Acesso em: 27 ago. 2020.