AVALIAÇÃO DO EXTRATO DA CASCA DE NOZ PECÃ COMO ANTIOXIDANTE PARA O BIODIESEL DE SOJA

ALEXANDRA APARECIDA DO AMARAL^{1*}, GECIELE CAROLINE SCHUSTER¹, ANDRÉ LAZARIN GALLINA¹

¹Universidade Federal da Fronteira Sul, c*ampus* Realeza

*Autor para correspondência: Alexandra Aparecida do Amaral (alexandra_16@hotmail.com.br)

1 Introdução

O Biodiesel é uma alternativa promissora de fonte energética para substituição total ou parcial do óleo diesel. Entretanto independentemente da matéria prima utilizada em sua produção, o biodiesel está sujeito à reação de degradação devido o contato com ar, luz, temperatura e por apresentar alto grau de insaturação¹⁻².

Diante disso, a estabilidade à oxidação é um critério de controle de qualidade para o biodiesel, sendo este regulamentado pele Agência Nacional do Petróleo, Gás Natural e Biocombustíveis – ANP. Para isso são realizados testes de oxidação acelerada que indicam o tempo de indução (TI). Desde novembro de 2014, a estabilidade à oxidação a 110^oC tem que ser de no mínimo de 8 horas de TI³.

Como intuito de diminuir ou inibir as reações de oxidação e aumentar a estabilidade de oxidação, são adicionados antioxidantes ao biodiesel⁴. Os antioxidantes podem ser classificados como naturais ou sintéticos. A maior vantagem de se utilizar antioxidantes naturais está relacionada à sua toxicidade, visto que os antioxidantes sintéticos, como o TBHQ, apresentam efeito carcinogênico^{1,2,4}.

Muitos antioxidantes naturais que já estão sendo adicionados ao biodiesel, entretanto não há na literatura, nem trabalhos científicos e patentes, relação da eficiência antioxidante da casca de noz pecã (*Carya illinoensis*) para biodiesel. A noz pecã apresenta elevada capacidade antioxidante e possui ácidos graxos insaturados, em que o processamento da noz produz cerca de 50% de cascas, que é considerado um subproduto⁵⁻⁶.

2 Objetivo

- Avaliar a eficiência extrato da casca de noz pecã como antioxidante para o biodiesel de soja

e averiguar a sua influência no processo de lavagem na estabilidade à oxidação do biodiesel.

3 Metodologia

Para a produção do biodiesel realizou-se a reação de transesterificação do óleo vegetal de soja, com metanol, pela rota alcalina (KOH). Após esse processo, o mesmo foi submetido à decantação por 24 horas, para que o glicerol fosse separado do biodiesel. A lavagem ocorreu de maneira convencional (controle), adicionando-se 30% de água ao biodiesel. Essa mistura foi acondicionada em um funil de decantação por 24h.

A adição do antioxidante ao biodiesel ocorreu por meio do processo de lavagem do biodiesel com os extratos da casca de noz pecã. Utilizou-se o método de condutimetria (teste de rancimat) em concordância com o regulamento da ANP seguindo as normas EN 14112³, para determinação do TI.

As cascas de noz pecã foram provenientes da Empresa Pecantea Divinut, Cachoeira do Sul – RS. Foram lavadas, secas e moídas com o auxilio de um almofariz e pistilo. Foi utilizando um extrator Soxhlet com diferentes solventes e concentrações, durante 4 horas, como apresentadas na tabela 1.

Tabela 1. Solventes e concentrações utilizados nos extratos.

	Solvente	Concentração (g.L ⁻¹)		
Concentrações Iniciais	Água	5	10	15
	Etanol	5	10	15
	Metanol + Água (50/50)	5	10	15
Concentrações otimizadas	Água	3	5	7
	Etanol	8	10	12
	Metanol + Água (50/50)	8	10	12

4 Resultados e Discussão

De acordo com a tabela 2 os extratos que apresentaram a maior média de TI e são diferentes do controle, foram o extrato ENA12 com 7,40 h, o ENE5 com 9,45 h e o ENMA12 com 7,37 h.

Tanto nas concentrações iniciais e nas otimizadas o TI do ENE5, foi de 9,45 h em média. Como o TI exigido pela ANP para estabilidade oxidativa do biodiesel, na temperatura de 110°C, é de no mínimo 8h, o biodiesel de soja lavado com o ENE5 apresentou resultados de estabilidade oxidativa dentro da conformidade exigida.

Tabela 2. Tempo de indução para o biodiesel de soja lavado com os extratos otimizadas.

Extrato de noz pecã	Concentração (g.L ⁻¹)	Sigla	TI ((h)
Aquoso	8	ENA8	7,42	7,54

UFFS - CAMPUS CHAPECÓ 17 e 18 de Outubro de 2016

	10	ENA10	5,24	4,93
	12	ENA12	7,6	7,21
	3	ENE3	4,24	5,13
	5	ENE5	9,45	9,46
Etanólico	7	ENE7	0,08	0,3
	8	ENMA8	6,8	7,37
Hidrometanólico	10	ENMA10	6,42	5,86
	12	ENMA12	7,31	7,43
Controle	-	-	5,43	5,76

O biodiesel lavado com ENA12 (7,40 h) e com ENMA12 (7,37 h), mesmo tendo apresentado TI inferior as 8 h, sinalizam um aumento na estabilidade oxidativa, que é verificada com a comparação entre estes extratos com o controle.

Dessa maneira, pode ser observado que existe uma diferença entre os tipos de lavagem do biodiesel, que foram utilizados, com os respectivos controles. Isso indica que a presença dos extratos durante este processo de lavagem modificou o TI.

5 Conclusão

Os extratos da casca de noz pecã podem ser utilizados como um antioxidante para o biodiesel de soja. As concentrações dos extratos que obtiveram os maiores TI foram o extrato etanólico da casca de noz pecã 5g.L⁻¹ (9,45 h), o extrato aquoso da casca de noz pecã 12g.L⁻¹ (7,40 h) e o extrato hidrometanólico da casca de noz pecã 12g.L⁻¹ (7,37 h).

Palavras-chave: Biocombustível, Oxidação, Rancimat, Inovação, Natural

Referências

¹MAIA, Elaine Cristina Rodrigues. Dissertação (Mestrado em Química) Universidade Estadual de Londrina, Centro de Ciências Exatas, Programa de Pós-Graduação em Química, Londrina, 2011

²BORSATO, D.; DALL' ANTONIA, L. H.; GUEDES, C. L. B.; MAIA, E. C. R.; FREITAS, H. R.; MOREIRA, I.; SPACINO, K. R. Aplicação do Delineamento Simplex-Centroide no Estudo da Cinética da Oxidação de Biodiesel B100 em Mistura com antioxidantes Sintéticos. Química Nova, v. 33, nº 8, 1726-1731, 2010.

³BRASIL. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. Resolução ANP n° 45, de 26 de agosto de 2008. Díponivel em: http://webcache.googleusercontent.com/search? q=cache:fhzAIjdIEPwJ:nxt.anp.gov.br/nxt/gateway.dll%3Ff%3Did%24id%3DRANP%252045%2520-%25202014+&cd=1&hl=pt-BR&ct=clnk&gl=br> Acesso em 7 Jan. 2016.

⁴MARTINS, Marta de Jesus Oliveira. Eficiência de antioxidantes em Biodiesel. 2010. Dissertação (Mestrado em Engenharia Química) Instituto Superior de Engenharia do Porto, Out. 2010.

⁵PRADO, P.C. A; Tese (Mestrado em ciências dos Alimentos) Universidade Federal de Santa Catarina, Programa de Pós - Graduação em ciências dos Alimentos, Florianópolis. 2008.

⁶BENVEGNÚ, M.D.; Tese (Dissertação de mestrado) Universidade Federal de Santa Maria, Programa de Pós – Graduação em Farmacologia, Santa Maria, 2010.

Dados adicionais

Número do Processo (SGPD): 23205.001816/2015-44 – Projeto institucionalizado – Estudante voluntário