

PATOGENICIDADE DE Fusarium graminearum EM SEMENTES DE CULTIVARES DE SOJA

TATIANA KUCIAK ^{1,2*}, KÁTIA DE FÁTIMA DA SILVEIRA³, SANDRA MARIA MAZIERO⁴, PAOLA MENDES MILANESI^{2,5}

1 Introdução

A soja (*Glycine max* [L.] Merrill) é uma das culturas agrícolas de maior importância mundial, pois é fonte de óleo e proteína (FAO, 2023). Essa cultura é prejudicada pela susceptibilidade a doenças fúngicas, que impactam desde o seu estabelecimento, interferindo no aumento de plântulas mortas ou com estatura reduzida (REIS; CASA, 2016). *Fusarium graminearum* é considerado um fungo necrotrófico pois sobrevive em restos de cultura onde o inóculo é mantido na entressafra, podendo modificar a germinação das culturas em sucessão (REIS; CASA 2016). Apesar de *Fusarium graminearum* afetar cereais de inverno, pode infectar soja, causando tombamento de plântulas em pré-emergência, podridão de raízes, e resultando em plântulas fracas a partir de sementes infectadas (ELLIS et al., 2011; BARROS et al., 2014; CHIOTTA et al., 2016).

2 Objetivos

Investigar a patogenicidade de *Fusarium graminearum* em sementes de diferentes cultivares de soja e demonstrar o tempo de infecção suficiente para que haja manutenção de germinação nas sementes.

3 Metodologia

O trabalho foi desenvolvido no Laboratório de Fitopatologia na Universidade Federal da Fronteira Sul – Campus Erechim (RS), em delineamento inteiramente casualizado. As sementes de soja utilizadas estavam sem tratamento de sementes, e foram obtidas junto a produtores da região de Erechim - RS.

As sementes de soja foram inoculadas com um isolado de *Fusarium graminearum* 1Acadêmica do curso de Agronomia, Universidade Federal da Fronteira Sul, *campus* Erechim, tatiana.kuciak@estudante.uffs.edu.br

² Grupo de Pesquisa: Manejo Sustentável de Sistemas Agrícolas (MASSA); Laboratório de Fitopatologia.

³ Acadêmica do curso de Agronomia, Universidade Federal da Fronteira Sul, campus Erechim.

⁴ Eng. Agrônoma, Dra. em Agronomia, Professora Adjunta, Universidade Federal da Fronteira Sul, *campus* Erechim.

⁵ Eng. Agrônoma, Dra. em Agronomia, Professora Adjunta, Universidade Federal da Fronteira Sul, *campus* Erechim, **Orientadora.**

pertencente a coleção Laboratório de Fitopatologia – UFFS por meio da técnica de contato direto entre as sementes e o patógeno, utilizando-se o restritor hídrico manitol (COUTINHO et al., 2001; CRUCIOL; COSTA, 2017).

Primeiramente, a fim de se determinar qual o melhor tempo de exposição das sementes de soja ao patógeno sem que houvesse prejuízos à germinação, o patógeno foi cultivado em placas de Petri contendo meio de cultura BDA acrescido de manitol (potencial osmótico -1,0 MPa), sobre os quais foram depositadas sementes de soja da cultivar BMX Garra IPRO previamente assepsiadas, e mantidas em diferentes tempos de exposição (2, 3, 6, 9, 12 e 24 h). Estas placas foram incubadas a 25 °C e fotoperíodo de 12 h durante cada um dos tempos de exposição acima descritos. Após este contato direto, as sementes foram removidas e deixadas para secar em temperatura ambiente sobre papel toalha durante 24 h (CRUCIOL; COSTA, 2017).

As sementes de soja foram submetidas ao teste de germinação, conduzido com oito repetições de 25 sementes, totalizando 200 sementes (BRASIL, 2009). O teste foi realizado em papel *Germitest*[®], umedecido com água destilada em 2,5 vezes o seu peso seco. Após a semeadura, foram confeccionados rolos, os quais permaneceram dispostos em incubadora a 25 °C, com fotoperíodo de 12 h. As avaliações ocorreram por meio de contagens aos 5 e 8 dias após semeadura. Na primeira contagem foram contabilizadas todas as sementes germinadas e que originaram plântulas normais. Na segunda contagem, as plântulas classificaram-se em normais e anormais; e também foram contabilizadas as sementes não germinadas (duras e mortas). Os resultados foram expressos em porcentagem (%).

Após determinado o melhor tempo de exposição, sementes de 16 cultivares de soja desprovidas de tratamento químico e com representatividade de cultivo na região do Alto Uruguai Gaúcho foram submetidas aos seguintes tratamentos: T1) sem inoculação de *Fusarium graminearum*; e T2) com inoculação do patógeno. Em seguida, procedeu-se a avaliação de germinação (%), conforme descrito acima.

Os dados obtidos foram submetidos a análise de variância pelo teste F ($p \le 0.05$) e, quando significativas, as médias para inoculação foram comparadas pelo teste t-LSD ($p \le 0.05$) e, para as cultivares, pelo teste de Scott-Knott ($p \le 0.05$). As análises foram realizadas por meio do *software* estatístico SISVAR (versão 5.6) (FERREIRA, 2011).

4 Resultados e Discussão

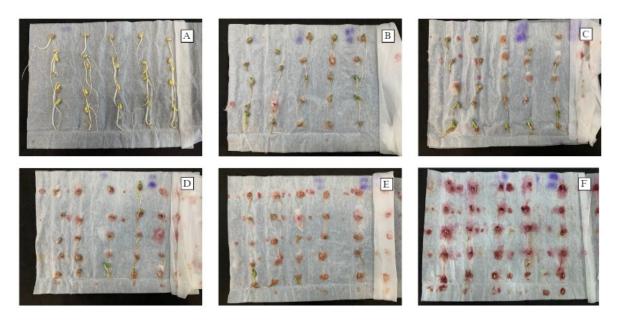

Para o tempo de exposição, após o contato direto com o patógeno, e posterior teste de germinação (Figura 1), verificou-se que a exposição durante 2 h foi a mais adequada para a realização do experimento (Tabela 1).

Tabela 1 – Germinação (%) de sementes de soja, cv. BMX Garra IPRO, submetidas a tempos de exposição (horas) a *Fusarium graminearum* em meio de cultura batata-dextrose-ágar (BDA) acrescido do restritor hídrico manitol (potencial hídrico -1,0 Mpa).

Tempo	Germinação (%)		
2 h	80 a¹		
3 h	44 b		
6 h	44 b		
9 h	14 c		
12 h	14 c		
24 h	5 d		
Média Geral	18		
C.V. $(\%)^2$	33,2		

¹Médias seguidas pela mesma letra minúscula na coluna não diferem estatisticamente pelo teste de Scott-Knott (p≤0,05). ²Coeficiente de variação.

Figura 1 - Primeira contagem do teste de germinação após o contato direto de sementes de soja, cv. BMX Garra IPRO, com *Fusarium graminearum* em diferentes tempos de incubação: 2 (A), 3 (B), 6 (C), 9 (D), 12 (E) e 24 h (F).

Fonte: Tatiana Kuciak (2024).

Para o teste de germinação (Tabela 2) sem inoculação das sementes o maior percentual foi obtido na cultivar TMG 7062 IPRO (90%) e o menor em M 5838 IPRO (75%). Entretanto,

para o teste de germinação com inoculação de Fusarium graminearum, as cultivares que se sobressaíram diante das demais foram a M 5892 IPRO (71%) e BMX Garra IPRO (70%).

Para a cv. TMG 7062 IPRO, a germinação foi de 90% no tratamento sem inoculação do patógeno. Em contrapartida, quando as sementes foram inoculadas, denotou-se o efeito prejudicial de Fusarium graminearum a ponto de que não houve germinação das sementes nessa condição (Tabela 2). Nas demais cultivares as sementes inoculadas foram severamente afetadas pelo patógeno, apresentando baixo percentual de germinação.

Tabela 2 - Germinação (%) de sementes de soja de diferentes cultivares, com e sem inoculação de Fusarium graminearum.

		Germinação (%)	
Cultivar	Local de coleta	COM	SEM
		inoculação	inoculação
M 5838 IPRO	Erechim- RS	$0 \mathrm{dB}^1$	75 bA
BMX Zeus IPRO	Erechim- RS	0 dB	89 aA
TMG 7062 IPRO	Barão de Cotegipe - RS	0 dB	90 aA
C2530 RR	Barão de Cotegipe - RS	0 dB	86 aA
BMX Cromo TF IPRO	Quatro Irmãos - RS	0 dB	88 aA
95R40 IPRO	Barão de Cotegipe - RS	0 dB	89 aA
57HO123 TF IPRO	Erechim- RS	0 dB	88 aA
M 5710 I2X	Quatro Irmãos - RS	2 dB	90 aA
BMX Delta IPRO	Jacutinga - RS	5 dB	87 aA
DM 59i58 IPRO	Maximiliano de Almeida - RS	37 cB	88 aA
BMX Ativa RR	Erechim- RS	41 cB	90 aA
NEO 580 IPRO	Barração - RS	41 cB	88 aA
DM 57i52 IPRO	Maximiliano de Almeida - RS	41 cB	89 aA
BMX Vênus CE	Quatro Irmãos - RS	48 bB	88 aA
BMX Garra IPRO	Maximiliano de Almeida - RS	70 aB	90 aA
M 5892 IPRO	Maximiliano de Almeida - RS	71 aB	89 aA
Média Geral			55
$C.V. (\%)^2$			11,1

¹Médias seguidas pela mesma letra minúscula na coluna e maiúscula na linha não diferem estatisticamente pelos testes de Scott-Knott (p≤0,05) e t-LSD (p≤0,05), respectivamente. ²Coeficiente de variação.

5 Conclusão

Fusarium graminearum causa danos na germinação, após inoculação em sementes, em todas as cultivares de soja avaliadas. As cultivares M 5892 IPRO e BMX Garra IPRO, após inoculação do patógeno, evidencia ser menos afetada pelo patógeno no teste de germinação.

Referências Bibliográficas

BARROS, G.G. et al. Pathogenicity of phylogenetic species in the *Fusarium graminearum* complex on soybean seedlings in Argentina. **European Journal of Plant Pathology**, v. 138, p. 215–222, 2014.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. **Regras para Análise de Sementes. Brasília**: MAPA, 2009. 395. p.

CHIOTTA, M.L. et al. Pathogenicity of *Fusarium graminearum* and *F. meridionale* on soybean pod blight and trichothecene accumulation. **Plant Pathology**, v. 65, p. 1492-1497. 2016.

COUTINHO, W.M. et al. Uso da restrição hídrica na inibição ou retardamento da germinação de sementes de arroz e feijão submetidas ao teste de sanidade em meio ágar-água. **Revista Brasileira de Sementes**, v. 23, n. 2, p.127-135. 2001.

CRUCIOL, G.C.D.; COSTA, M.L.N. Influência de metodologias de inoculação de *Macrophomina phaseolina* no desempenho de cultivares de soja. **Summa Phytopathologica**, v. 43, n. 4, p. 337-343, 2017.

ELLIS, M. L. et al. Infection of soybean seed by *Fusarium graminearum* and effect of seed treatments on disease under controlled conditions. **Plant Disease**, v. 95, n. 4, p. 401-407, 2011.

FAO – Food and Agriculture Organization of the United Nations. **Soybean**. Disponível em: https://www.fao.org/land-water/databases-and-software/crop-information/soybean/en/. Acesso em: 06 abr. 2023.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. **Ciência & Agrotecnologia**, v. 35, n.6, p. 1039-1042, 2011.

REIS, E.M.; CASA, R.T. **Doenças do trigo.** In: AMORIM, L.; REZENDE, J.A.M.; BERGAMIN FILHO, A.; CAMARGO, L.E.A. (Eds.). Manual de Fitopatologia – Doenças das Plantas Cultivadas. V. 2, 5 ed. 2016. p. 737-744.

Palavras-chave: Glycine max [L.] Merrill; germinação; damping off.

Nº de Registro no sistema Prisma: PES 2023-0297

Financiamento: UFFS