

DESENVOLVIMENTO E CARACTERIZAÇÃO DE EMBALAGENS BIODEGRADÁVEIS DE AMIDO E RESÍDUOS AGROINDUSTRIAIS

LUAN MARTINS GOMES 1,2*, DAVI LUIZ KOESTER^{2,3}, VÂNIA ZANELLA PINTO^{2,4}, LEDA BATTESTIN QUAST^{2,5}

1 INTRODUÇÃO

O poliestireno expandido (Isopor®) é amplamente utilizado na indústria alimentícia como bandejas ou recipientes, pois consiste num material com características interessantes já que apresenta boa versatilidade e isolamento térmico e tem um baixo custo de produção. Entretanto, não é biodegradável e em muitas aplicações, é usado apenas uma vez, o que na maioria das vezes, resulta em descarte incorreto. O descarte inadequado ocasiona acúmulo de resíduos indesejáveis ao meio ambiente, principalmente os microplásticos (DÍAZ-MENDONZA, 2020).

Nota-se, a princípio, que uma excelente alternativa de possível substituição, mesmo que de forma parcial, dos materiais derivados do EPS, é o uso das espumas expandidas biodegradáveis (AGUILAR et al., 2023). A facilidade de metabolização dos materiais biodegradáveis por bactérias, leveduras e fungos, quando exposta ao meio ambiente gera uma atenção maior aos produtos renováveis, por exemplo o amido, já que possui características como capacidade espessante e formação de espuma além de seu baixo custo (FERREIRA et al., 2020; TÁPIA-BLÁCIDO et al., 2022). Outro aspecto é a elevada hidrofilicidade e baixa resistência mecânica das embalagens derivadas de amido. Estas características limitam o uso individual desse polissacarídeo para a produção de embalagens semirrígidas. Diante disso, como forma de melhoria dessas características podem ser adicionados à mistura de amido e água, aditivos como resíduos agroindustriais e outros plastificantes a fim de melhorá-las (AGUILAR et al., 2023; FERREIRA; MOLINA; PELISSARI, 2020).

¹ Graduando, Universidade Federal da Fronteira Sul, campus Laranjeiras do Sul, luanmar1998@gmail.com

² Grupo de Pesquisa: Produção, transformação e armazenamento de alimentos

³ Engenheiro de Alimentos, Universidade Federal da Fronteira Sul, campus Laranjeiras do Sul

⁴ Doutora, Universidade Federal da Fronteira Sul, campus Laranjeiras do Sul

⁵ Doutora, Universidade Federal da Fronteira Sul, campus Laranjeiras do Sul. Orientadora

2 OBJETIVOS

Desenvolver e caracterizar bandejas biodegradáveis de amido de mandioca reforçadas com resíduos agroindustriais como sabugo de milho, palhada de soja, casca de mandioca, casca de pinhão, fiapo de erva mate e palito de erva mate.

3 METODOLOGIA

Os resíduos de sabugo de milho, palhada de soja, casca de mandioca, casca de pinhão, fiapo de erva mate e palito de erva mate utilizados foram adquiridos de produtores rurais nas cidades do centro-oeste do PR. O amido de mandioca (polvilho doce), glicerol, estearato de magnésio e a goma guar foram oriundos do comércio local de Laranjeiras do Sul – PR.

Os resíduos foram secos e moídos até atingir granulometria média menor que 710 µm e superior a 250 µm, exceto o fiapo de erva-mate que apresenta retenção igual para a peneira de 60 mesh e para a peneira de 200 mesh.

As embalagens foram produzidas com a homogeneização do amido acompanhado dos resíduos e demais componentes (Tabela 1). Uma formulação não adicionada de resíduo denominada padrão. As misturas foram colocadas em molde fechado aquecido a 180 °C por 4 minutos para a formação da espuma no formato de bandeja.

Tabela 1 Formulações das bandejas expandidas de amido produzidas com diferentes resíduos agroindustriais

Matérias primas	Padrão	F 1	F 2	F 3	F 4	F 5	F 6
Amido (g)	16,8	14,4	14,4	14,4	14,4	14,4	14,4
Água (mL)	19	19	19	19	19	19	19
Estearato de magnésio (g)	0,3	0,3	0,3	0,3	0,3	0,3	0,3
Glicerol (g)	0,9	0,9	0,9	0,9	0,9	0,9	0,9
Goma Guar (g)	0,3	0,3	0,3	0,3	0,3	0,3	0,3
Resíduo (g)	2,4	2,4	2,4	2,4	2,4	2,4	2,4

Caracterização das Bandejas

A densidade aparente foi determinada utilizando recortes quadrados de 20 mm de largura para a aferição das dimensões e massa. O cálculo da densidade aparente foi feito pela razão entre a massa e o volume dos corpos de prova.

As propriedades mecânicas foram avaliadas utilizando 10 corpos de prova de cada formulação, previamente armazenada em UR de 52% a 25 °C por 48 h. Os corpos de prova para o

ensaio de tração foram cortados em formato de gravata com 100 mm de comprimento por 25 mm de largura e 15 mm no meio. Os ensaios foram realizados em texturometro de bancada TA.XT plus (Stable Micro Systems, Surrey, UK), com separação inicial de 70 mm entre as garras, velocidade de ensaio de 1 mm/s conforme a norma D88-218 (ASTM, 2017). O ponto de tensão máximo (MPa) da curva de tensão x deformação determinou a resistência a tração. O alongamento foi calculado pela diferença entre a distância final no ponto de tração máxima até a ruptura do corpo de prova pela distância inicial. A inclinação linear da curva do gráfico de tensão x deformação determinou o módulo Young ou de elasticidade (MPa).

Os dados foram analisados pela sua variância (ANOVA) e as médias foram comparadas pelo teste Tukey a 95% de confiança (p<0,05).

4 RESULTADOS E DISCUSSÕES

A bandeja padrão apresentou densidade 158,43 ± 8,63 kg/m³ (Tabela 2). As bandejas adicionadas de resíduos apresentaram densidade superior que a padrão. O resíduo de casca de mandioca e de casca de pinhão foram os que resultaram em maior densidade, seguido do palito de erva-mate. O sabugo de milho, palhada de soja e o fiapo de erva-mate apresentaram densidade semelhante, o que indica que as características físicas e químicas do resíduo tem efeito na sua aplicação como reforço em embalagens expandidas (Tabela 2). O processo de expansão das espumas de amidos ocorre com o aquecimento de uma suspensão de amido e água. Esse fenômeno pode promover a diminuição da expansão da massa de amido, consequência advinda da composição lignocelulósica dos resíduos adicionados (MACHADO *et al.*, 2017). Alguns estudos identificaram que adição a de resíduos pode influenciar na variação de densidade, bagaço de laranja 0,49 ± 0,03 g/m³ e bagaço de cana 0,14 ± 0,03 g/m³). Em geral, os resíduos agroindustriais possuem baixa densidade, os quais impactam na baixa densidade de bandejas descartáveis (FERREIRA; MOLINA; PELISSARI, 2020).

Tabela 2 – Densidade, tração máxima, alongamento e módulo de Young das bandejas elaboradas com diferentes resíduos.

Residuos	Densidade kg/m³	Tração máxima (MPa)	Alongamento máximo (mm)	Modulo de Young (MPa)
Padrão	$158,43 \pm 8,63^{D}$	$0,7630 \pm 0,0746^{A}$	$0,009 \pm 0,0006^{C}$	$54,53 \pm 6,93^{A}$
Sabugo de Milho	$195,25 \pm 11,90$ BC	$0,5319 \pm 0,0639^{BC}$	$0,015 \pm 0,0017^{A}$	$41,15 \pm 4,64^{BC}$
Palhada de Soja	$194,66 \pm 13,63$ BC	$0,4417 \pm 0,0430^{\text{CDE}}$	$0,016 \pm 0,0019^{A}$	$41,24 \pm 3,74^{BC}$
Casca de Mandioca	$222,39 \pm 5,06$ A	$0,3633 \pm 0,0413^{E}$	0.011 ± 0.0014^{BC}	$36,88 \pm 3,73^{BC}$
Casca de Pinhão	$222,32 \pm 12,04$ A	$0,5489 \pm 0,0522^{B}$	$0,017 \pm 0,0016^{A}$	$43,00 \pm 4,74^{B}$
Fiapo de Erva-mate	$182,35 \pm 8,14$ ^C	$0,4229 \pm 0,0470^{\text{DE}}$	0.015 ± 0.0012^{AB}	$35,22 \pm 2,88^{\circ}$
Palito de Erva-mate	$211,68 \pm 14,50$ AB	$0,5065 \pm 0,0588^{BCD}$	0.018 ± 0.0011^{A}	$38,84 \pm 4,36^{BC}$

A bandeja padrão apresentou resistência à tração de 0,7630 ± 0,0746 Mpa (Tabela 2). Dentre os resíduos, o de casca de pinhão, sabugo de milho e palito de erva mate apresentaram maiores resistências à tração, seguidos da palhada de soja, fiapo de erva mate e casca de mandioca, os quais tiveram resultados similares. A bandeja padrão apresentou um resultado de alongamento máximo 0,009 ± 0,0006. Nesse aspecto os melhores resultados foram de sabugo de milho, palhada de soja, casca de pinhão e palito de erva mate. A casca de mandioca e fiapo de erva mate apresentaram os menores alongamentos. O esforço de tração máximo que o corpo suporta no processo de ensaio de tensão equivale a resistência à tração (RIBBA *et al.*, 2017). Desta forma, a resistência à tração se assemelhou à do EPS (~0,73 Mpa), porém o alongamento foi inferior (4,69 %) (FERREIRA; MOLINA; PELISSARI, 2020). Isso indica o potencial de aplicação das bandejas desenvolvidas.

A rigidez do material é caracterizada pelo método de Young, quanto mais rígido maior o módulo de Young (CALLISTER, 2002; VLACK, 2000). Desta forma, a adição de resíduos nas bandejas expandidas de amido reduziu a rigidez da embalagem, na qual o fiapo de ervamate foi o mais eficiente. A redução da rigidez pode ser favorável em aplicações que a embalagem sofrerá esforços mecânicos repetidos, evitando fratura.

5 CONCLUSÃO

O grande potencial das embalagens de amido reflete uma alternativa para a possível substituição, mesmo que de forma parcial, das embalagens produzidas do poliestireno expandido (Isopor®). A adição de pelo menos 10% de resíduos agroindustriais causou redução de 40-50% na resistência à tração e na rigidez das embalagens expandidas. Alguns compostos presentes nos resíduos foram os responsáveis pelo aumento da densidade e alongamento, e redução da resistência à tração.

REFERÊNCIAS BIBLIOGRÁFICAS

AGUILAR, Guilherme J.; TAPIA-BLÁCIDO, Delia R. Evaluating how avocado residue addition affects the properties of cassava starch-based foam trays. **International Journal of Biological Macromolecules**, v. 240, p. 124348, 2023.

CALLISTER J.W.D. Ciência e Engenharia de Materiais uma Introdução. LTC, ed. 5, 2002

DÍAZ-MENDOZA, C., et al. Plastics and microplastics, effects on marine coastal areas: a review. **Environmental Science and Pollution Research**, v.27, p.39913-39922, 2020.

FERREIRA, Danielle CM; MOLINA, Gustavo; PELISSARI, Franciele M. Biodegradable trays based on cassava starch blended with agroindustrial residues. **Composites Part B: Engineering**, v. 183, p. 107682, 2020.

MACHADO, Caroline Martins; BENELLI, Patrícia; TESSARO, Isabel Cristina. Sesame cake incorporation on cassava starch foams for packaging use. **Industrial crops and products**, v. 102, p. 115-121, 2017.

RIBBA, L., et al. Disadvantages of Starch-Based Materials, Feasible Alternatives in Order to Overcome These Limitations. **Starch-Based Materials in Food Packaging**, p. 37-76, 2017. TAPIA-BLÁCIDO, Delia Rita et al. Trends and challenges of starch-based foams for use as food packaging and food container. **Trends in Food Science & Technology**, v. 119, p. 257-271, 2022.

Palavras-chave: biodegradável; densidade aparente; resistência à flexão; amido.

Nº de Registro no sistema Prisma: PES 2023 - 0259

Financiamento: Fundação Araucária