

DOUGLAS ALESSANDRO HABOSKI^{1,3}, EDUARDA BATISTELLI GIACOMOLLI^{2,3}, SAYANE ZANCHET^{2,3}, GILSON LUCAS MÜLLER^{2,3}, LEANDRO GALON^{3,4*}

1 Introdução

Dentre as técnicas estudadas para despoluição de solo, destaca-se a fitorremediação como uma das mais promissoras (SILVA et al., 2020; BARROSO et al., 2023). A fitorremediação consiste em utilizar espécies vegetais para remoção de herbicidas presentes no ambiente onde foram aplicados (SILVA et al., 2020). A seleção de espécies fitorremediadoras é a primeira etapa do processo, esta deve ser criteriosa, pois necessita de plantas com características favoráveis para absorver os poluentes, descontaminar o solo, além de possuir um rápido crescimento, fácil adaptação e bom estabelecimento inicial (SILVA et al., 2020).

2 Objetivos

Avaliar o potencial das espécies de coberturas semeadas no inverno para fitorremediarem solo tratado com os herbicidas diuron, sulfentrazone e diuron + sulfentrazone.

3 Metodologia

O experimento foi conduzido na área experimental da Universidade Federal da Fronteira Sul, em delineamento experimental de blocos casualizados, arranjado em esquema fatorial 3 x 9, com 4 repetições. No fator A alocou-se as espécies vegetais: aveia preta, ervilhaca, centeio, nabo, trigo-mourisco, azevém, tremoço, as misturas de aveia preta + ervilhaca + centeio + nabo + azevém e solo sem cultivo de nenhuma espécie. No fator B foram dispostos os herbicidas diuron (490 g ha⁻¹), sulfentrazone (245 g ha⁻¹) e a mistura de diuron + sulfentrazone (490 + 245 g ha⁻¹), sendo os nomes comerciais, Diuron Nortox 500 SC (0,98 L ha⁻¹), Boral® 500 SC (0,49 L ha⁻¹) e Stone® (1,40 L ha⁻¹), respectivamente.

A semeadura das espécies com potencial fitorremediador (Tabela 1) foi realizada com semeadora/adubadora em parcela com área de 3 x 6 m (18 m⁻²), um dia antes da aplicação dos

¹ Acadêmico do curso de Agronomia, Universidade Federal da Fronteira Sul, *Campus* Erechim, contato: douglashaboski60@gmail.com

² Acadêmico(a) do curso de Agronomia, Universidade Federal da Fronteira Sul, *Campus* Erechim.

³ Grupo de Pesquisa: Manejo Sustentável dos Sistemas Agrícolas (MASSA).

⁴ Professor Doutor, Universidade Federal da Fronteira Sul, *Campus* Erechim. *Orientador.

herbicidas. Os herbicidas foram aplicados um dia após a semeadura, utilizando-se um pulverizador costal de precisão, pressurizado a CO₂, equipado com quatros pontas de pulverização tipo leque DG 110.02, com vazão de 150 L ha⁻¹ de calda. Aos 14 e 28 dias após a emergência (DAE) foram realizadas as avaliações de fitotoxicidade das espécies com potencial fitorremediador.

Tabela 1. Espécies com potencial fitorremediador de solo, densidades e plantas m⁻² para as coberturas com potencial fitorremediador.

Espécies	Densidade (kg ha ⁻¹)	Plantas (m-2	
Aveia preta	80	40	
Ervilhaca	60	30	
Centeio	300	40	
Nabo	1,5	40	
Trigo-mourisco	120	80	
Azevém	30	80	
Tremoço	90	30	
Mistura de espécies	80	45	

Para a segunda etapa do experimento a área foi dessecada com glyphosate + saflufenacil (1440 + 70) + óleo mineral (0,5% v/v) 10 dias antes da semeadura de sorgo e girassol. Efetuou-se adubação no sulco de semeadura do sorgo e do girassol na quantidade de 350 kg ha⁻¹ da fórmula 13-24-12 de N-P-K, de acordo com a análise química e seguindo-se as recomendações técnicas para essas culturas. Foram semeadas com semeadora/adubadora 3 linhas de sorgo e de girassol das cultivares BM 737 e ADV 5504, espaçadas a 0,50 m entre si, e nas densidades de 17,5 e 6 sementes m⁻¹, respectivamente. A colheita do sorgo e do girassol foi realizada quando esses atingiram 18 e 12% de umidade, em área útil de 1,5 m⁻², aferindo-se a produtividade de grãos (kg ha⁻¹).

4 Resultados e Discussão

O trigo-mourisco e a aveia preta demonstraram, de modo geral, a maior fitotoxicidade dos 14 aos 28 DAE ao se aplicar o sulfentrazone e diuron + sulfentrazone (Tabela 2). Por outro lado, a ervilhaça foi dentre as coberturas vegetais, a que demonstrou menor efeito de fitotoxicidade ao se aplicar o sulfentrazone e o diuron + sulfentrazone. O herbicida diuron demonstrou maiores fitotoxicidades dos aos 14 DAE para aveia preta e ervilhaça. Todas as espécies com potencial fitorremediador a partir dos 28 DAE não demonstram diferenças na fitotoxicidade ao diuron. Em relação a fitotoxicidade ocasionada pelo diuron sobre as espécies em que foi aplicado observa-se que o trigo (PASCAL-LORBER et al., 2010) a mucuna-preta,

nabo, crotalária e tremoço foram espécies vegetais que sofrem baixa fitotoxicidade ao serem tratadas com esse produto (TEÓFILO et al., 2020).

Tabela 2. Fitotoxicidade (%) das coberturas com potencial fitorremediador aos 14 e 28 dias após a emergência (DAE). UFFS, Campus Erechim/RS, 2023.

Tratamentos	Fitotoxicidade aos 14 DAE			Fitotoxicidade aos 28 DAE				
	Test.	Diuron	Sulfent.	Diu.+sulf.	Test.	Diuron	Sulfent.	Diu.+sulf.
Aveia preta	0,00 Dns	10,00 Ca	20,97 Bc	29,03 Ab	0,00 B	1,53 Ba	18,58 Ab	19,33 Ab
Ervilhaca	0,00 C	8,67 Aa	5,00 Bf	5,00 Bf	0,00 A	0,00 Aa	0,00 Ag	0,00 Ae
Centeio	0,00 D	5,00 Cb	15,97 Bd	17,67 Ad	0,00 C	1,53 Ca	14,44 Ac	12,33 Bd
Nabo	0,00 D	5,97 Cb	12,33 Be	19,03 Ac	0,00 C	0,83 Ca	9,33 Be	13,00 Ad
Mourisco	0,00 C	1,67 Bc	60,00 Aa	59,03 Aa	0,00 C	0,00 Ca	48,58 Ba	50,61 Aa
Azevém	0,00 D	10,00 Ca	23,58 Ab	19,33 Bc	0,00 B	0,00 Ba	18,00 Ab	17,67 Ac
Mistura	0,00 D	5,83 Cb	20,83 Ac	19,33 Bc	0,00 B	0,00 Ba	12,33 Ad	11,33 Ad
Tremoço	0,00 C	5,75 Bb	11,00 Ae	11,00 Ae	0,00 B	0,00 Ba	4,44 Ae	0,00 Be
CV(%)	8,07				13,82			
Média Geral	12,56			7,93				

¹ Médias seguidas de letras diferentes maiúsculas na linha e minúscula na coluna diferem entre si pelo teste de Scott-Knott, a p<0,05, respectivamente. Ns: não significativo a p<0,05. Test.: Testemunha; Sulfent:: Sulfentrazone; Diu.+sulf.: Diuron + Sulfentrazone.

Ao se comparar os herbicidas entre si quando aplicados em cada cobertura individual observou-se dos 14 aos 28 DAE que a mistura composta por diuron + sulfentrazone ocasionou maior efeito de fitotoxicidade sobre a aveia preta e nabo (Tabelas 2). O sulfentrazone e o diuron + sulfentrazone foram dentre os herbicidas usados em centeio e trigo-mourisco, os que se destacaram como os tratamentos com maiores efeitos fitotóxicos ocasionados nessas coberturas, em todas as avaliações efetuadas. Alves et al. (2019) observaram que o sulfentrazone (600 g ha⁻¹) ocasionou fitotoxicidade de 80% para a aveia preta e a morte do trevo.

O uso de diuron, sulfentrazone e diuron + sulfentrazone demonstram as maiores produtividades de grãos do girassol nos tratamentos envolvendo o solo sem coberturas, o tremoço e a aveia preta, respectivamente (Tabela 3). O tremoço demonstrou maior produtividade de grãos ao se aplicar sobre ele o diuron e o sulfentrazone. As demais coberturas apresentaram produtividades de grãos do girassol inferiores para todos os herbicidas aplicados nas mesmas. O solo sem cobertura pode ter degradado os herbicidas, pois possuía teor de matéria orgânica de 3,2%, o que favorece para se ter maior bioatividade, além de ser argiloso (>65%) possibilitando a sorção e a degradação dos herbicidas (DAN et al., 2011; SILVA et al., 2020).

Ao se comparar os tratamentos herbicidas entre si, dentro de cada cobertura despoluidora, observou-se que a mistura de diuron + sulfentrazone foi inferior estatisticamente a testemunha sem aplicação somente ao se usar o nabo, trigo-mourisco e o solo sem cobertura (Tabela 3). Observou-se maior produtividade de grãos do girassol quando se usou como

cobertura de solo, a aveia preta, ervilhaca, centeio, nabo, azevém e o tremoço e sobre essas aplicou-se o diuron, ao se comparar esse com a testemunha sem uso de herbicidas.

O sulfentrazone em comparação com a testemunha sem herbicida, diuron ou a mistura comercial demonstrou maior produtividade de grãos do girassol quando se usou como cobertura o centeio, nabo, azevém e tremoço. Já a mistura de diuron + sulfentrazone foi estatisticamente superior a testemunha sem herbicidas, diuron e sulfentrazone quando as plantas despoluidoras eram a aveia preta, a ervilhaca e a mistura de espécies, para a produtividade de grãos do girassol. As espécies de aveia preta e tremoço possuem potencial para fitorremediação do sulfentrazone (ALVES et al., 2019), nabo e tremoço do diuron (TEÓFILO et al., 2020), centeio tolera e despoluí solo com presença de herbicidas inibidores de PROTOX (CORNELIUS et al., 2017).

Tabela 3. Produtividade de grãos (kg ha⁻¹) do girassol e sorgo em função de espécies fitorremediadoras e herbicidas.

Tratamentos	Produtividade de grãos girassol (kg ha-1)				Produtividade de grãos sorgo (kg ha-1)			
	Test.	Diuron	Sulfent.	Diu.+sulf.	Test.	Diuron	Sulfent.	Diu.+sulf.
Aveia preta	2122,29 Cf1	2440,59 Bc	1629,95 Dh	3309,77 Aa	1620,01 Bd	1340,71 Ci	1332,50 Df	1952,84 Aa
Ervilhaca	1997,10 Dh	2142,51 Be	2120,01 Cf	2502,40 Af	1170,54 Bh	1653,40 Af	1126,15 Cg	935,00 Dg
Centeio	2056,87 Dg	2130,36 Cf	2437,53 Ad	2141,22 Bh	2136,36 Cb	2348,09 Ac	2164,01 Bc	1557,30 De
Nabo	2399,94 Cc	2827,27 Bb	3227,61 Ac	2296,71 Dg	1817,56 Cc	2394,57 Ab	2199,79 Bb	1559,46 De
Mourisco	2597,04 АЬ	1650,61 Dh	1841,85 Cg	2082,28 Bi	2345,01 Aa	1841,22 Be	1098,30 Ch	777,28 Dh
Azevém	2317,78 Dd	2380,04 Cd	3281,60 Ab	3251,74 Bc	1267,15 Dg	2534,14 Aa	1365,96 Ce	1893,88 Bb
Mistura	2267,18 Ce	1938,72 Dg	2314,27 Be	3259,66 Ab	1435,72 Ce	2342,21 Bd	2347,35 Aa	1159,40 Df
Tremoço	1515,82 Di	3011,48 Ca	3377,21 Aa	3192,77 Bd	1399,19 Bf	1382,53 Ch	1054,08 Di	1755,24 Ac
Sem cobertura	2888,09 Aa	2138,98 Ce	1493,86 Di	2675,90 Be	1046,76 Di	1483,02 Cg	1649,31 Bd	1722,23 Ad
CV(%)	0,11			0,16				
Média Geral	2423,86			1644,67				

¹ Médias seguidas de letras diferentes maiúsculas na linha e minúscula na coluna diferem entre si pelo teste de Scott-Knott, a p<0,05, respectivamente. Test.: Testemunha; Sulfent: Sulfentrazone; Diu.+sulf.: Diuron + Sulfentrazone.

As maiores produtividades de grãos de sorgo ocorreram quando se usou o trigomourisco, o azevém, a mistura de espécies e a aveia preta ao se usar a testemunha sem herbicidas, diuron, sulfentrazone e o diuron + sulfentrazone, respectivamente (Tabela 3). Para as demais coberturas de cada tratamento as produtividades de grãos foram inferiores a essas espécies. Na ausência dos herbicidas, o sorgo conseguiu se desenvolver sem sofrer estresse ou injúria. No tratamento com coberturas de azevém, mistura de espécies e aveia preta, essas conseguiram deixar o solo com o menor teor de contaminação possível, e consequentemente isso ocasionou as maiores produtividades. Fato esse observado também por Alves et al. (2019) onde a aveia preta fitorremediou solo tratado com sulfentrazone.

5 Conclusão

O diuron causa menor fitotoxicidade a todas as espécies testadas como potencialmente

fitorremediadoras de solo. A ervilhaca e o tremoço demonstram sofrer menor fitotoxicidade na presença de diuron, sulfentrazone e diuron + sulfentrazone podendo serem usadas como fitorremediadoras. A maior produtividade de grãos do girassol ocorreu ao solo descoberto para a testemunha sem aplicação de herbicidas, o tremoço para uso do sulfentrazone e a aveia preta ao se aplicar o diuron + sulfentrazone. Aas maiores produtividades de grãos do sorgo foram obtidas na testemunha sem herbicida, para o diuron, sulfentrazone e diuron + sulfentrazone ao se usar como coberturas despoluidoras o trigo-mourisco, o azevém, a mistura de espécies e aveia preta, respectivamente.

Referências Bibliográficas

ALVES, C. et al. Winter species promote phytoremediation of soil contaminated with protoxinhibiting herbicides. **Planta Daninha**, v. 37, e. 019184783, 2019.

BARROSO, G. M. et al. Phytoremediation: A green and low-cost technology to remediate herbicides in the environment. **Chemosphere**, v. 334, p. 138943, 2023.

CORNELIUS, C. D.; BRADLEY, K. W. Carryover of common corn and soybean herbicides to various cover crop species. **Weed Technology**, v. 31, n. 1, p. 21-31, 2017.

DAN, H. A. et al. Atividade residual de herbicidas pré-emergentes aplicados na cultura da soja sobre o milheto cultivado em sucessão. **Planta Daninha**, v. 29, n. 2, p. 437-445, 2011.

PASCAL-LORBER, S. et al. Metabolic fate of [14C] diuron and [14C] linuron in wheat (*Triticum aestivum*) and radish (*Raphanus sativus*). **Journal of Agricultural and Food Chemistry**, v. 58, n. 20, p. 10935-10944, 2010.

SILVA, C. T. Remedial capacity of diclosulam by cover plants in different edaphoclimatic conditions. **International Journal of Phytoremediation**, v. 23, n. 6, p. 609-618, 2020.

TEÓFILO, T. M. S. Phytoextraction of diuron, hexazinone, and sulfometuron-methyl from the soil by green manure species. **Chemosphere**, v. 256, e. 127059, 2020.

Palavras-chave: Despoluição do solo; Mistura de herbicidas; Fitorremediação.

Nº de Registro no sistema Prisma: PES-2022 - 0141

Financiamento: PIBIC/CNPq