

ANÁLISE TÉCNICA DOS PROCESSOS DE PRÉ-TRATAMENTOS DA BIOMASSA SORGO SACARINO (SORGHUM BICOLOR).

FERNANDO MELZ^{1,2}*, SIUMAR P. TIRONI^{2,3}, JOÃO P. BENDER^{2,3}, GUILHERME M. MIBIELLI^{2,4}

1 INTRODUÇÃO

A crise energética que ocorre mundialmente vem se tornando cada vez mais expressiva, provocando insegurança no cenário nacional. Com essa preocupação, os estudos relacionados a geração de energia através de biomassas, com um menor impacto ambiental, têm se tornado cada vez mais atrativos. Dessa maneira, os matérias lignocelulósicos, como a biomassa de sorgo sacarino, tornam-se uma fonte promissora para a produção de bioetanol. A problemática traz-se devido à dificuldade da conversão dessa biomassa em açucares fermentescíveis, sendo o objetivo deste trabalho estudar as etapas de pré-tratamento e hidrólise enzimática, visando a produção de bioetanol.

2 OBJETIVOS

Investigar o emprego de diferentes agentes químicos no processo de prétratamento da biomassa de sorgo sacarino, caracterizando o material antes e após esta etapa, tendo como objetivo a identificação do agente químico que possui a melhor eficiência.

3 METODOLOGIA

A biomassa do sorgo sacarino (*Sorghum bicolor*), utilizada para esse estudo, foi cultivada na área experimental da Universidade Federal da Fronteira Sul - Campus Chapecó. Após o cultivo, a mesma passou pelas etapas de pré-secagem e redução de tamanho em moinho de facas.

¹ Discente, Universidade Federal da Fronteira Sul, campus Chapecó, contato: fermelz42@gmail.com

² Grupo de Pesquisa: Processos Enzimáticos e Microbiológicos.

³ Docente, Universidade Federal da Fronteira Sul, *campus Chapecó*.

Docente, Universidade Federal da Fronteira Sul, *campus Chapecó*, **Orientador**.

EVENTO ON-LINE 23 A 26 DE NOVEMBRO

A caracterização química, realizada antes e após os pré-tratamentos, para a determinação dos teores cinzas, extrativos, lignina total e carboidratos, seguiu o procedimento padrão da NREL (2005) e da norma TAPPI T "Solver Extractives in Biomass" (TAPPI, 1996). Também foi realizado um balanço de massa para determinar as alterações decorridas durante o pré-tratamento. Todas as analises foram realizadas em triplicata.

Também vale salientar, que as condições utilizadas para os ensaios foram para fins de entendimento prévio da ação dos agentes químicos sobre a biomassa, partindo das condições ótimas obtidas por Dresch et al. (2019) e Bohn (2018).

As condições experimentais utilizadas para nos ensaios de pré-tratamento alcalino foram: (a) razão sólido-líquido 1:10, ou seja, 10 gramas de biomassa e 100 mL de água destilada; (b) duas concentrações distintas do agente químico (5 e 15% m/m); (c) temperatura de incubação fixada em 70 °C; (d) incubação em shaker (SL – 223) a 200 rpm; (e) tempo de incubação de 24 horas.

Os agentes químicos alcalinos utilizados nessa etapa foram: (i) Hidróxido de sódio – NaOH; (ii) Óxido de cálcio – CaO; (iii) Peroxido de hidrogênio – H₂O₂.

Após decorrer o tempo de incubação, as amostras foram retiradas e filtradas com o auxílio da bomba de vácuo, novamente caracterizadas e posteriormente seus conteúdos de carboidratos e inibidores foram analisados através da utilização de Cromatografía Líquida de Alta Eficiência (CLAE).

4 RESULTADOS E DISCUSSÃO

4.1 Análise da composição química in situ.

Os resultados obtidos no processo inicial de caracterização química em base seca estão representados na tabela 1.

Tabela 1. Caracterização físico-química da biomassa do sorgo sacarino em base seca

Cinzas	Extrativos	Lignina Total	Celulose	Hemicelulose
$3,60 \pm 0,11\%$	$17,75 \pm 1,0\%$	$25,53 \pm 0,4\%$	$33,94 \pm 1,0\%$	22,08 ± 1,3%

Podemos destacar a alta porcentagem de celulose e hemicelulose, cerca de

EVENTO ON-LINE 23 A 26 DE NOVEMBRO

56,02%, que são polissacarídeos de cadeia longa que quando hidrolisados, geram seus monômeros (glicose e xilose), principal substrato para a produção de bioetanol. Uma baixa porcentagem de cinzas (3,6%), como encontrado, reduzem o descarte em forma de compostos inorgânicos. A lignina total é outro ponto muito importante, já que ela atua como uma barreira física e impede que as enzimas encontrem a celulose e hemicelulose, sendo o papel do pré-tratamento quebrar a lignina, rompendo essa barreira.

4.2 Análise da composição química após o pré-tratamento

A tabela 2 apesenta os resultados obtidos após a etapa de pré-tratamento, onde o principal objetivo é reduzir o teor de lignina e aumentar a concentração de celulose e hemicelulose.

Tabela 2. Caracterização química da biomassa de sorgo após a etapa de pré-tratamento, realizada em diferentes concentrações de agente químico.

Agente (m/m)	Cinzas (%)	Extrativos (%)Lignina total (%	%)Celulose (%)	Hemicelulose (%)
NaOH (5%)	$5,61 \pm 0,14$	$30,\!27 \pm 0,\!78$	$20,42 \pm 0,39$	$37,37 \pm 1,06$	$5,60 \pm 0,34$
NaOH (15%)	$10,70 \pm 0,24$	$20,\!18\pm0,\!90$	$16,51 \pm 0,47$	$46,64 \pm 4,56$	$5,\!24\pm0,\!93$
CaO (5%)	$4,\!64\pm0,\!06$	$18,\!48\pm0,\!95$	$16,78 \pm 1,00$	$37,12 \pm 1,67$	$21,86 \pm 1,72$
CaO (15%)	$11,15\pm 1,13$	$29,54 \pm 3,92$	$11,81 \pm 0,67$	$38,58 \pm 1,07$	$18,\!47 \pm 0,\!64$
$H_2O_2(5\%)$	$2,\!55\pm0,\!72$	$18,61 \pm 0,93$	$26,\!86\pm0,\!96$	$35,82 \pm 0,70$	$20,00 \pm 0,61$
$H_2O_2(15\%)$	$2,\!67 \pm 0,\!97$	$20,91\pm0,19$	$25,01 \pm 1,15$	$36,34 \pm 0,11$	$19,62 \pm 1,30$

^{*}Médias e desvio padrão realizadas em triplicata.

Podemos constatar a partir da tabela 2 que em relação a caracterização, todos os pré-tratamentos foram efetivos quanto o aumento do percentual de celulose e que a relação da concentração do agente aplicado influi na redução da lignina. Entretanto, o pré-tratamento com NaOH degradou a hemicelulose em ambas as concentrações, o que não é interessante para o projeto. Já o H_2O_2 mostrou pouca eficiência na remoção da lignina.

O agente químico óxido de cálcio (CaO), tanto a 5% como a 15%, demonstrou excelentes resultados, onde degradou a lignina e aumentou o percentual relativo à celulose e hemicelulose. Ademais, pretende-se avaliar mais formas de pré-tratamento,

EVENTO ON-LINE 23 A 26 DE NOVEMBRO

buscando-se otimizar estas etapas do processo.

5 CONCLUSÃO

Por meio dos testes preliminares realizados, podemos identificar um caminho para dar prosseguimento aos próximos teste, para que esses resultados sejam ainda mais promissores. A biomassa de Sorgo Sacarino apresenta um elevado potencial de ser uma matéria prima a ser introduzida na matriz energética brasileira por meio do etanol de segunda geração. Em termos de rendimento no pré-tratamento, quando utilizado óxido de cálcio, obteve-se os melhores resultados em função da degradação da lignina e do aumento na concentração de celulose e hemicelulose, demonstrando assim, ser um excelente agente para o pré-tratamento.

REFERÊNCIAS BIBLIOGRÁFICAS

BOHN, L. R. Produção De Bioetanol a Partir de Biomassa Lignocelulósica de Milho. 2018. 21 f. TCC (Graduação) - Curso de Engenharia Ambiental e Sanitária, Universidade Federal da Fronteira Sul, Chapecó, 2018.

DRESCH, A., FÜHR, J., VARGAS, A., MIBIELLI, G., & BENDER, J. Caracterização Físico-Química Da Biomassa De Milheto (Pennisetum glaucum). Anais da COBEQIC XIII, Uberlândia, v. 1, n. 6, 2019.

NREL. Laboratory Analytical Procedures, 2005. Disponível em: < https://www.nrel.gov/bioenergy/laboratory-analytical-procedures.html>. Acesso em: 20 de Jul. de 2020.

TAPPI – Technical Association of the Pulp and Paper Industry. TAPPI test methods T 204 om-88: solvent extractives of wood and pulp. Atlanta: Tappi Technology Park, 1996.

Palavras-chave: Pré-tratamento, Bioetanol, Biomassa Lignocelulósica, Açúcares Fermentescíveis.

Nº de Registro no sistema Prisma: PES 2020 - 0415

Financiamento: UFFS