

PONTENCIALIDADES DE USO DO CONTROLE BIOLÓGICO E ALTERNATIVO COMO ESTRATÉGIAS PARA O MANEJO INTEGRADO DA PODRIDÃO COMUM DE RAÍZES EM TRIGO

SUELEN CAPPELLARO^{1,2*}, JÚLIA ANDRADE³, GABRIELE GIRELLI DE ANDRADE³, VANESSA NEUMANN SILVA⁴, PAOLA MENDES MILANESI^{2,5}

1 Introdução

Estima-se que na safra 2020 o trigo (*Triticum aestivum* L.) alcance uma área de 809,5 mil hectares cultivados na região Sul do Brasil (CONAB, 2020). Entretanto, a cultura é afetada por inúmeras doenças fúngicas que causam problemas no seu estabelecimento, entre elas a podridão comum de raízes (Anam.: *Fusarium graminearum*).

Os óleos essenciais e o controle biológico com micro-organismos antagonistas têm despertado interesse no manejo de doenças, principalmente pelo menor impacto nos recursos naturais, quando comparado a utilização de fungicidas. Por isso, esses produtos podem ser empregados no manejo de podridão comum de raízes em trigo, via tratamento de sementes.

2 Objetivos

Investigar a aplicabilidade do controle alternativo e biológico sobre o crescimento micelial (mm) e o índice de crescimento micelial (ICM, %) de isolados de *Fusarium graminearum* e, a qualidade fisiológica de sementes de trigo inoculadas com o patógeno.

3 Metodologia

O trabalho foi conduzido na Área Experimental e nos Laboratórios de Fitopatologia e de Microscopia da UFFS- Campus Erechim/RS. Os isolados de *Fusarium graminearum* (*Fg*) foram obtidos de espigas de trigo (cv. OR 1403) e cevada (cv. BRS Brau) com sintomas de giberela, e mantidos em placas de Petri contento meio de cultura batata-dextrose-ágar (BDA). A identidade dos isolados foi confirmada morfologicamente, por meio de chaves descritivas, e

¹ Acadêmica do curso de Agronomia, Universidade Federal da Fronteira Sul, *campus* Erechim, **Bolsista**, contato: suelen02cappellaro@hotmail.com

² Grupo de Pesquisa: Manejo Sustentável dos Sistemas Agrícolas (MASSA)

³ Acadêmicas do curso de Agronomia, Universidade Federal da Fronteira Sul, campus Erechim

⁴ Eng. Agrônoma, Dra. Em Agronomia, Professora Adjunta, Universidade Federal da Fronteira Sul, *campus* Chapecó

⁵ Eng. Agrônoma, Dra. Em Agronomia, Professora Adjunta, Universidade Federal da Fronteira Sul, *campus* Erechim, **Orientadora**

também por meio de sequenciamento da região TEF-1α do rDNA.

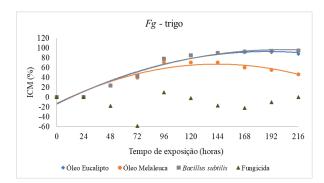
Para avaliar o crescimento micelial, os isolados do patógeno foram expostos aos tratamentos: T1) Testemunha (apenas BDA); T2) óleo essencial de eucalipto - *Corymbia citriodora* (2 μL); T3) óleo essencial de melaleuca - *Melaleuca alternifólia* (2 μL); T4) *Bacillus subtilis* (300 μL; linhagem QST 713; mínimo de 1 x 10⁹ UFC/g i.a.), sendo que para os tratamentos T2, T3 e T4 a dose indicada foi misturada em 10 mL de meio BDA fundente e vertido em cada placa; e T5) triadimenol (fungicida; 150 g i.a. L⁻¹), realizando-se a diluição do fungicida conforme proposto por Tonin et al. (2013).

O crescimento micelial dos isolados foi mensurado com uma régua graduada (mm), por meio de duas medidas em eixos ortogonais, a cada 24 horas. A medição foi realizada até que na testemunha o patógeno atingisse as bordas da placa (90 mm). A taxa de inibição do crescimento micelial (ICM, %) foi calculada por: ICM = [(crescimento na testemunha - crescimento no tratamento Y)/crescimento na testemunha] x 100.

Para determinar o índice de velocidade de germinação (IVG), os isolados foram inoculados em sementes de trigo (cv. TBIO Sonic), pelo uso de restritor hídrico manitol (C₆H₁₄O₆) (COUTINHO et al., 2001), em potencial hídrico de -1,0 MPa. As sementes ficaram em contato direto com o patógeno por 24 horas e, após, permaneceram em temperatura ambiente para secagem (24 horas). Os tratamentos avaliados foram: T1) Testemunha negativa (sementes sem inóculo em meio BDA + manitol); T2) Testemunha positiva (sementes com inóculo em meio BDA + manitol); T3) óleo essencial de eucalipto (2 μL; 10 min. fumigação); T4) óleo essencial de melaleuca (2 μL; 10 min. fumigação); T5) *Bacillus subtilis* (300 μL); e T6) triadimenol (200 mL/100 kg sementes). O teste foi conduzido com 200 sementes por tratamento, distribuídas em rolos de papel *germitest*, incubados a 20 °C e fotoperíodo de 12 horas (BRASIL, 2009). Diariamente, até o quarto dia de incubação, foram contabilizadas as sementes germinadas, determinando-se assim o IVG (MAGUIRE, 1962).

Os ensaios foram conduzidos em delineamento inteiramente casualizado, com quatro repetições por tratamento. Os dados foram submetidos à análise de variância (teste F; p \leq 0,05) e, quando significativos, realizou-se análise de regressão polinomial (variável ICM, %) e comparação de médias pelo teste de Tukey (p \leq 0,05) (variável IVG).

4 Resultados e Discussão


Os óleos essenciais de eucalipto e melaleuca, assim como o *Bacillus subtilis* inibiram o crescimento micelial dos isolados de *Fg* avaliados, apresentando efeito significativo (Tabela 1). Constatou-se que em todos os tempos de exposição (horas) esses tratamentos tiveram

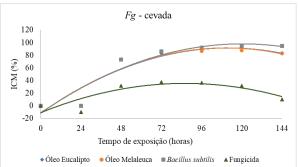

potencial de inibição (Figura 1). Em contrapartida, no tratamento fungicida, apenas para o isolado de Fg obtido de cevada houve efeito significativo (Tabela 1; Figura 1).

Tabela 1. Equações, coeficiente de determinação (R^2) e probabilidade (Pr > Fc) para a inibição do crescimento micelial (ICM, %) de isolados de *Fusarium graminearum* (Fg) obtidos de trigo e de cevada, e expostos aos tratamentos com óleos essenciais de eucalipto e melaleuca, *Bacillus subtilis* e fungicida.

Tratamento	Equação	R ²	Pr>Fc	
Isolado Fg - trigo				
Óleo Eucalipto	$y = -0.003x^2 + 1.1319x - 14.055$	0,947	$0,006^{*}$	
Óleo Melaleuca	$y = -0.0039x^2 + 1.1127x - 12.664$	0,905	$0,000^{*}$	
Bacillus subtilis	$y = -0.0027x^2 + 1.0909x - 13.312$	0,953	$0,013^{*}$	
Fungicida	$y = 0.0014x^2 - 0.2978x - 2.586$	0,105	$0,195^{\rm ns}$	
Isolado Fg – cevada				
Óleo Eucalipto	$y = -0.0082x^2 + 1.8429x - 11.625$	0,882	$0,000^{*}$	
Óleo Melaleuca	$y = -0.0085x^2 + 1.8677x - 11.734$	0,878	$0,000^{*}$	
Bacillus subtilis	$y = -0.0076x^2 + 1.8203x - 11.569$	0,897	$0,000^{*}$	
Fungicida	$y = -0.0063x^2 + 1.0774x - 11.135$	0,713	$0,000^{*}$	

^{*} significativo (p ≤ 0.05); ns não significativo

Figura 1. Índice de crescimento micelial (ICM, %) de isolados de *Fusarium graminearum* (*Fg*) obtidos de trigo e de cevada, expostos aos tratamentos com óleos essenciais de eucalipto e melaleuca, *Bacillus subtilis* e fungicida em função do tempo de exposição (horas).

Com relação ao IVG, houve diferença estatística apenas para a Testemunha positiva quando comparados entre os dois isolados de *Fg*. Para os demais tratamentos, não houve diferença estatística para o mesmo isolado (Tabela 2).

Ao confrontar os testes realizados *in vitro* (Figura 1) com os *in vivo* (Tabela 2) denota-se que não houve a mesma efetividade entre os tratamentos. Assim, é necessário empenhar-se na busca de alternativas para que os resultados alcançados *in vitro* sejam reproduzíveis o mais próximo possível no teste *in vivo*.

Tabela 2. Índice de velocidade de germinação (IVG) em sementes de trigo (cv. TBIO Sonic), após contato direto com isolados de *Fusarium graminearum* (*Fg*), obtidos de trigo e cevada, e tratadas com óleos essenciais de eucalipto e melaleuca, *Bacillus subtilis* e fungicida.

Tuetementee	IVG		
Tratamentos	Fg - trigo	Fg - cevada	
Testemunha Negativa	47,06 aA ¹	49,83 aA	
Testemunha Positiva	10,83 cB	17,35 cA	
Óleo essencial de eucalipto	11,10 cA	14,89 cA	
Óleo essencial de melaleuca	10,83 cA	14,10 cA	
Bacillus subtilis	29,81 bA	29,85 bA	
Fungicida triadimenol	31,70 bA	29,60 bA	
C.V. (%)	14	1 ,14	
Média geral	24	1,74	

¹ Médias seguidas pela mesma letra minúscula na coluna e maiúscula na linha não diferem estatisticamente pelo teste de Tukey (p ≤ 0,05). ² Coeficiente de variação.

5 Conclusão

Os óleos essenciais de eucalipto e melaleuca e o *Bacillus subtilis* foram efetivos na inibição do crescimento micelial (ICM, %) de *Fusarium graminearum*, mas não asseguram maior velocidade de germinação (IVG) em sementes inoculadas com o patógeno.

Referências

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para Análise de Sementes. Brasília: MAPA, 2009a. 395. p.

COUTINHO, W.M. et al. Uso da restrição hídrica na inibição ou retardamento da germinação de sementes de arroz e feijão submetidas ao teste de sanidade em meio ágar-água. **Revista Brasileira de Sementes**, Lavras, v. 23, n. 2, p.127-135. 2001.

CONAB. COMPANHIA NACIONAL DE ABASTECIMENTO. Acompanhamento da safra brasileira de grãos. Safra 2019-20. Nono levantamento. v. 7, n. 9, junho. 2020.

MAGUIRE, J. D. Speed of germination - aid in selection and evualation for seedling emerge and vigor. 1962.

TONIN, R.F.B. et al. In vitro mycelial sensitivity of *Macrophomina phaseolina* to fungicides. **Pesquisa Agropecuária Tropical**, Goiânia, v.43, n.4, p.460-466, 2013.

Palavras-chave: triticultura; *Fusarium graminearum*; antibiose; óleo essencial; restrição hídrica.

Financiamento: Edital Nº 459/GR/UFFS/2019.