

ADSORÇÃO DE FENOL E 4-NITROFENOL UTILIZANDO CARVÃO ATIVADO COMO ADSORVENTE: ESTUDO EM BATELADA

JOSIANE BAMPI^{1,2}, TAINÁ CRISTINI DA SILVA^{2,3}, ADRIANA DERVANOSKI^{2,4}, GEAN D. L. P. VARGAS^{2,5}

1 Introdução/Justificativa

Dentre as diversas formas de poluições aos quais os corpos d'água estão sujeitos, especial atenção se dá aos compostos aromáticos fenólicos, que possuem grande potencial tóxico à biota e de acumulação no meio (Li *et al.*, 2018). Uma técnica utilizada com muita frequência pela sua eficiência no tratamento de efluentes é a adsorção. Esta se baseia em uma operação de transferência de massa, de uma fase fluida para uma fase sólida. Os processos de adsorção justificam a sua aplicação por concentrarem os poluentes em um volume pequeno e de fácil disposição, além de permitirem uma ampla afinidade entre adsorventes e adsorvatos.

2 Objetivos

Avaliar a eficiência de remoção de fenol e 4-nitrofenol em efluentes sintéticos utilizando processos de adsorção com carvão vegetal ativado por sistema em batelada.

3 Material e Métodos

3.1 Efluente sintético e carvão ativado adsorvente

Os efluentes sintéticos contendo os contaminantes, fenol e 4-nitrofenol foram preparados pela dissolução de 4-nitrofenol (PA 99%) e do fenol (PA 99%) em água destilada. O carvão ativado (CA) empregado no estudo foi disponibilizado pela Indústria Química Carbomafra S.A., possuindo uma granulometria de 18 mesh.

3.2 Técnicas analíticas

As concentrações de fenol das amostras avaliadas foram realizadas de acordo com APHA 2005 (Método 5530 D). Já as concentrações de 4-nitrofenol foram mensuradas segundo metodologia descrita por Biomedical Centre in Uppsala (2002). As técnicas colorimétricas foram utilizadas para leitura das amostras em triplicata, conduzidas a

¹Acadêmico do curso de Engenharia Ambiental e Sanitária, UFFS, *campus* Erechim, contato: josiane.bampi@estudante.uffs.edu.br

²Grupo de Pesquisa em Resíduos, Geotecnia Ambiental e Poluição Atmosférica – GPRGAEPA da UFFS.

³Acadêmico do curso de Engenharia Ambiental e Sanitária, UFFS, campus Erechim.

⁴Profa. do Curso de Engenharia Ambiental e Sanitária e Co-orientadora, campus Erechim.

⁵⁰rientadora do projeto de pesquisa e Profa. do Curso de Engenharia Ambiental e Sanitária, *campus* Erechim.

temperatura ambiente (22-25° C).

3.3 Avaliação do pH e massa de adsorvente

Para a avaliação do pH foram realizados ensaios na faixa de 2-12 mono e multicomponente, utilizando as concentrações de fenol (85,1mg L⁻¹), 4-nitrofenol (105,6 mg L⁻¹), multicomponente (194,2 mg L⁻¹) sendo a contribuição do fenol (89,4 mg L⁻¹) 4-nitrofenol (104,8 mg L⁻¹). Já para a avaliação da massa de adsorvente foi realizado ensaios com massas na faixa de 0,25 - 1,25 g de carvão, com concentrações de fenol= 82,6 mg L⁻¹, 4-nitrofenol= 104,8 mg L⁻¹ e multicomponente 190,5 mg L⁻¹ (fenol 88,0 + 4-nitrofenol 102,5 mg L⁻¹). O tempo de contato do adsorvente com as soluções de efluentes sintéticos foi de 24 horas.

3.4 Estudo do equilíbrio


Os ensaios cinéticos foram realizados para verificar o tempo de equilíbrio nas condições mono-componentes nas concentrações iniciais de fenol (48,0 mg L⁻¹) e 4-nitrofenol (71,0 mg L⁻¹) e multicomponente (fenóis totais= 80,0 mg L⁻¹), com massa de adsorvente de 1,0 g, na faixa de pH 6 - 7, sendo o tempo monitorado em intervalos pré-determinados, os ensaios mono componente foram realizados em duplicata, já o multicomponente em triplicata.

4 Resultados e Discussão

A Figura 1a abaixo apresenta o comportamento do processo de adsorção do fenol, 4-nitrofenol na forma mono componente e multicomponente em diferentes pHs. As melhores remoções observadas ocorrem em pH ácido, sendo as mesmas acima de 97% para os três efluentes sintéticos avaliados, mantendo-se assim até o pH 10, em pH 12 observou-se uma pequena redução na remoção. Estes resultados mostram a possibilidade de se trabalhar em pH próximos a neutralidade não havendo assim a necessidade de ajustes. Já a massa de adsorvente necessário para os ensaios cinéticos (Figura 1b). Observou-se que massas acima de 0,8 g de CA obteve-se remoções acima de 97 % para as três soluções avaliadas, quando se empregou massa superiores a 1,0 g observou-se uma redução na remoção de fenol, entretanto, conseguiu-se 100 % de remoção para a solução mono componente de 4-nitrofenol e multicomponente.

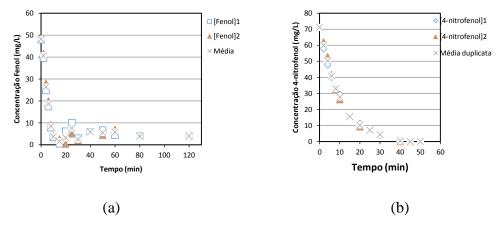


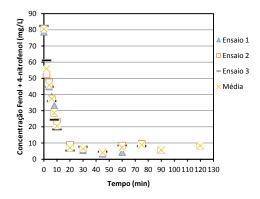
Figura 1. Avaliação do pH do meio no processo de adsorção de Fenol, 4-nitrofenol, multicomponente (a) . Avaliação da massa de carvão ativado na remoção fenol, 4-nitrofenol e multicomponente (b).

Assim optou-se por utilizar uma massa de adsorvente intermediaria entre 0,8 e 1,2. Para a determinação do tempo de equilíbrio de adsorção, foram realizados ensaios cinéticos utilizando os efluentes mono componentes (Figura 2) e multicomponente (Figura 3).

Figura 2. Cinética de adsorção mono: fenol = $48.0 \pm 0.2 \, \text{mg L}^{-1}$ (a); 4-nitrofenol = $71.0 \pm 0.1 \, \text{mg L}^{-1}$ (b).

A Figura 3 abaixo apresenta os ensaios multicomponentes (fenol + 4-nitrofenol).

Figura 3. Cinética de adsorção multicomponente (fenol= 28,4 mg L^{-1} + 4-nitrofenol= 52,0 ± 1,5 mg L^{-1})


Através dos dados cinéticos mono componentes foi possível observar que a remoção de fenol do efluente sintético tem uma velocidade elevada nos primeiros tempos obtidos na curva de adsorção, mantendo-se constante a partir dos 60 minutos decorridos do processo, onde a concentração se manteve em torno de 4 mg L⁻¹. Já o 4-nitrofenol presente no efluente sintético mono componente demonstrou uma velocidade menor de remoção no inicio dos ensaios cinéticos, entretanto obteve-se 100 % de remoção a partir dos 40 minutos de reação.

ISSN 2526-205x

Nestes ensaios foi possível verificar que a partir dos 20 minutos de reação a remoção dos fenóis totais que compõe o efluente multicomponente permanece constante na faixa de 7 a 8 mg L⁻¹.

5 Conclusão

O CA utilizado no processo de adsorção dos compostos aromáticos fenol e 4-nitrofenol mono e multicomponentes, foi efetivo na remoção dos mesmos presentes em efluente sintético. Foi possível verificar que o 4-nitrofenol apresentou maior afinidade pelo adsorvente, visto que, aos 45 minutos foi possível chegar a 100 % de remoção.

Referências

APHA-AWWA-WPCF, **Standard Methods for the Examination of Water and Wastewater.** 19th Edition. American Public Health Association, Washington, DC, 2005.

Biomedical Centre in Uppsala Alpha2. **Structural Biology Laboratory**, Sweden. 2002. Disponível em: http://alpha2.bmc.uu.se/Courses/Bke2?Labs/Lab_kinetics.Html.

LI, Y.; TABASSUM, S.; CHU, C.; ZHANG, Z. Inhibitory effect of high phenol concentration intreating coal gasification wastewater in anaerobic biofilter. **J. of Env. Sciences**, v. 64, p. 207-215, 2018.

Palavras-chave: efluentes; equilíbrio cinético; compostos aromáticos.

Financiamento

PROBIC-FAPERGS

UFFS- Campus Erechim

